Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21263359

ABSTRACT

Emerging diseases caused by coronaviruses of likely bat origin (e.g. SARS, MERS, SADS and COVID-19) have disrupted global health and economies for two decades. Evidence suggests that some bat SARS-related coronaviruses (SARSr-CoVs) could infect people directly, and that their spillover is more frequent than previously recognized. Each zoonotic spillover of a novel virus represents an opportunity for evolutionary adaptation and further spread; therefore, quantifying the extent of this "hidden" spillover may help target prevention programs. We derive biologically realistic range distributions for known bat SARSr-CoV hosts and quantify their overlap with human populations. We then use probabilistic risk assessment and data on human-bat contact, human SARSr-CoV seroprevalence, and antibody duration to estimate that [~]400,000 people (median: [~]50,000) are infected with SARSr-CoVs annually in South and Southeast Asia. These data on the geography and scale of spillover can be used to target surveillance and prevention programs for potential future bat-CoV emergence.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-158717

ABSTRACT

The legal and illegal trade in wildlife for food, medicine and other products is a globally significant threat to biodiversity that is also responsible for the emergence of pathogens that threaten human and livestock health and our global economy. Trade in wildlife likely played a role in the origin of COVID-19, and viruses closely related to SARS-CoV-2 have been identified in bats and pangolins, both traded widely. To investigate the possible role of pangolins as a source of potential zoonoses, we collected throat and rectal swabs from 334 Sunda pangolins (Manis javanica) confiscated in Peninsular Malaysia and Sabah between August 2009 and March 2019. Total nucleic acid was extracted for viral molecular screening using conventional PCR protocols used to routinely identify known and novel viruses in extensive prior sampling (>50,000 mammals). No sample yielded a positive PCR result for any of the targeted viral families - Coronaviridae, Filoviridae, Flaviviridae, Orthomyxoviridae and Paramyxoviridae. In light of recent reports of coronaviruses including a SARS-CoV-2 related virus in Sunda pangolins in China, the lack of any coronavirus detection in our upstream market chain samples suggests that these detections in downstream animals more plausibly reflect exposure to infected humans, wildlife or other animals within the wildlife trade network. While confirmatory serologic studies are needed, it is likely that Sunda pangolins are incidental hosts of coronaviruses. Our findings further support the importance of ending the trade in wildlife globally.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-116061

ABSTRACT

Bats are presumed reservoirs of diverse coronaviruses (CoVs) including progenitors of Severe Acute Respiratory Syndrome (SARS)-CoV and SARS-CoV-2, the causative agent of COVID-19. However, the evolution and diversification of these coronaviruses remains poorly understood. We used a Bayesian statistical framework and sequence data from all known bat-CoVs (including 630 novel CoV sequences) to study their macroevolution, cross-species transmission, and dispersal in China. We find that host-switching was more frequent and across more distantly related host taxa in alpha-than beta-CoVs, and more highly constrained by phylogenetic distance for beta-CoVs. We show that inter-family and -genus switching is most common in Rhinolophidae and the genus Rhinolophus. Our analyses identify the host taxa and geographic regions that define hotspots of CoV evolutionary diversity in China that could help target bat-CoV discovery for proactive zoonotic disease surveillance. Finally, we present a phylogenetic analysis suggesting a likely origin for SARS-CoV-2 in Rhinolophus spp. bats.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20063776

ABSTRACT

The consequences of COVID-19 infection varies substantially based on individual social risk factors and predisposing health conditions. Understanding this variability may be critical for targeting COVID-19 control measures, resources and policies, including efforts to return people back to the workplace. We compiled individual level data from the National Health Information Survey and Quarterly Census of Earnings and Wages to estimate the number of at-risk workers for each US county and industry, accounting for both social and health risks. Nearly 80% of all workers have at least one health risk and 11% are over 60 with an additional health risk. We document important variation in the at-risk population across states, counties, and industries that could provide a strategic underpinning to a staged return to work. One Sentence SummaryThere is important variability in the proportion of the US workforce at risk for COVID-19 complications across regions, counties, and industries that should be considered when targeting control and relief policies, and a staged return to work.

SELECTION OF CITATIONS
SEARCH DETAIL
...