Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 268: 129363, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33360935

ABSTRACT

Magnetic seeding coagulation (MSC) process has been used to accelerate flocs sedimentation with an applied magnetic field, offering large handling capacity and low energy consumption. The interactions of three typical Al species, aluminum chloride (AlCl3), Al13O4(OH)247+ polymer (Al13), and (AlO4)2Al28(OH)5618+ polymer (Al30), with magnetic particles (MPs) were examined to clarify the MSC process. In traditional coagulation (TC) process, the aggregation of primary Ala-dissolved organic matter (DOM) complexes with in-situ-formed polynuclear species generated a large average floc size (226 µm), which was proved to be efficient for DOC removal (52.6%). The weak connections between dissolved Ala-DOM complexes and MPs led to the negligible changes of dissolved Al after seeding with MPs in AlCl3. A significant interaction between MPs and Al13 was observed, in which the MPs-Al13-DOM complexes were proposed to be responsible for the significant improvement of DOC removal (from 47% to 52%) and residual total Al reduction (from 1.05 to 0.27 mg Al L-1) with MPs addition. Al30 produced a lower floc fractal dimension (Df = 1.88) than AlCl3 (2.08) and Al13 (1.99) in the TC process, whereas its floc strength (70.9%) and floc recovery (38.5%) were higher than the others. Although more detached fragments were produced with MPs addition, the effective sedimentation of these fragments with the applied magnetic field led to the decrease of residual turbidity and colloidal Al in Al30. The dependence of coagulation behavior to MPs and different Al species can be applied to guide the application of an effective MSC process.


Subject(s)
Water Purification , Aluminum , Aluminum Chloride , Flocculation , Magnetic Phenomena , Polymers
2.
Environ Res ; 183: 109175, 2020 04.
Article in English | MEDLINE | ID: mdl-31999996

ABSTRACT

Drinking water distribution systems (DWDSs) are used to supply hygienically safe and biologically stable water for human consumption. The potential of thermal energy recovery from drinking water has been explored recently to provide cooling for buildings. Yet, the effects of increased water temperature induced by this "cold recovery" on the water quality in DWDSs are not known. The objective of this study was to investigate the impact of cold recovery from DWDSs on the microbiological quality of drinking water. For this purpose, three pilot distribution systems were operated in parallel for 38 weeks. System 1 has an operational heat exchanger, mimicking the cold recovery system by maintaining the water temperature at 25 °C; system 2 operated with a non-operational heat exchanger and system 3 run without heat exchanger. The results showed no significant effects on drinking water quality: cell numbers and ATP concentrations remained around 3.5 × 105 cells/ml and 4 ng ATP/l, comparable observed operational taxonomic units (OTUs) (~470-490) and similar Shannon indices (7.7-8.9). In the system with cold recovery, a higher relative abundance of Pseudomonas spp. and Chryseobacterium spp. was observed in the drinking water microbial community, but only when the cold recovery induced temperature difference (ΔT) was higher than 9 °C. In the 38 weeks' old biofilm, higher ATP concentration (475 vs. 89 pg/cm2), lower diversity (observed OTUs: 88 vs. ≥200) and a different bacterial community composition (e.g. higher relative abundance of Novosphingobium spp.) were detected, which did not influence water quality. No impacts were observed for the selected opportunisitic pathogens after introducing cold recovery. It is concluded that cold recovery does not affect bacterial water quality. Further investigation for a longer period is commended to understand the dynamic responses of biofilm to the increased temperature caused by cold recovery.


Subject(s)
Cold Temperature , Drinking Water , Water Quality , Bacteria , Biofilms , Water Microbiology , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...