Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 83(4): 686-704, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26108615

ABSTRACT

Given the potential health benefits of polyphenolic compounds in the diet, there is a growing interest in the generation of food crops enriched with health-protective flavonoids. We undertook a series of metabolite analyses of tomatoes ectopically expressing the Delila and Rosea1 transcription factor genes from snapdragon (Antirrhinum majus), paying particular attention to changes in phenylpropanoids compared to controls. These analyses revealed multiple changes, including depletion of rutin and naringenin chalcone, and enhanced levels of anthocyanins and phenylacylated flavonol derivatives. We isolated and characterized the chemical structures of the two most abundant anthocyanins, which were shown by NMR spectroscopy to be delphinidin-3-(4'''-O-trans-p-coumaroyl)-rutinoside-5-O-glucoside and petunidin-3-(4'''-O-trans-p-coumaroyl)-rutinoside-5-O-glucoside. By performing RNA sequencing on both purple fruit and wild-type fruit, we obtained important information concerning the relative expression of both structural and transcription factor genes. Integrative analysis of the transcript and metabolite datasets provided compelling evidence of the nature of all anthocyanin biosynthetic genes, including those encoding species-specific anthocyanin decoration enzymes. One gene, SlFdAT1 (Solyc12g088170), predicted to encode a flavonoid-3-O-rutinoside-4'''-phenylacyltransferase, was characterized by assays of recombinant protein and over-expression assays in tobacco. The combined data are discussed in the context of both our current understanding of phenylpropanoid metabolism in Solanaceous species, and evolution of flavonoid decorating enzymes and their transcriptional networks in various plant species.


Subject(s)
Anthocyanins/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Molecular Sequence Data , Plant Proteins/genetics , Transcription Factors/genetics
2.
Nat Biotechnol ; 26(11): 1301-8, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18953354

ABSTRACT

Dietary consumption of anthocyanins, a class of pigments produced by higher plants, has been associated with protection against a broad range of human diseases. However, anthocyanin levels in the most commonly eaten fruits and vegetables may be inadequate to confer optimal benefits. When we expressed two transcription factors from snapdragon in tomato, the fruit of the plants accumulated anthocyanins at levels substantially higher than previously reported for efforts to engineer anthocyanin accumulation in tomato and at concentrations comparable to the anthocyanin levels found in blackberries and blueberries. Expression of the two transgenes enhanced the hydrophilic antioxidant capacity of tomato fruit threefold and resulted in fruit with intense purple coloration in both peel and flesh. In a pilot test, cancer-susceptible Trp53(-/-) mice fed a diet supplemented with the high-anthocyanin tomatoes showed a significant extension of life span.


Subject(s)
Anthocyanins/metabolism , Antirrhinum/genetics , Gene Expression Regulation, Plant , Genetic Engineering/methods , Plants, Genetically Modified , Solanum lycopersicum/metabolism , Transcription Factors/metabolism , Animals , Antioxidants/metabolism , Antirrhinum/metabolism , Biotechnology/methods , Solanum lycopersicum/genetics , Mice , Neoplasms/mortality , Pigments, Biological , Transcription Factors/genetics , Transgenes , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics
3.
J Nutr ; 138(4): 747-52, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18356330

ABSTRACT

Consumption of flavonoid-rich foods and beverages is thought to reduce the risk of cardiovascular diseases. Whereas the biological activities of flavonoids have been characterized in vitro, there are no clear experimental data demonstrating that chronic dietary intake and intestinal absorption of flavonoids actually protects the heart against ischemia-reperfusion injury. We tested whether long-term consumption of specific flavonoids (anthocyanins) included in normal food could render the heart of rats more resistant to myocardial infarction. Maize kernels that differed specifically in their accumulation of anthocyanins were used to prepare rodent food in which anthocyanins were either present or absent. Male Wistar rats were fed the anthocyanin-rich (ACN-rich) or the anthocyanin-free (ACN-free) diet for a period of 8 wk. Anthocyanins were significantly absorbed and detected in the blood and urine of only rats fed the ACN-rich diet. In Langendorff preparations, the hearts of rats fed the ACN-rich diet were more resistant to regional ischemia and reperfusion insult. Moreover, on an in vivo model of coronary occlusion and reperfusion, infarct size was reduced in rats that ate the ACN-rich diet than in those that consumed the ACN-free diet (P < 0.01). Cardioprotection was associated with increased myocardial glutathione levels, suggesting that dietary anthocyanins might modulate cardiac antioxidant defenses. Our findings suggest important potential health benefits of foods rich in anthocyanins and emphasize the need to develop anthocyanin-rich functional foods with protective activities for promoting human health.


Subject(s)
Anthocyanins/administration & dosage , Anthocyanins/pharmacology , Heart/drug effects , Myocardial Reperfusion Injury/prevention & control , Animals , Anthocyanins/analysis , Anthocyanins/genetics , Drug Administration Schedule , Gene Expression Regulation, Plant , Male , Myocardium/metabolism , Rats , Rats, Wistar , Zea mays/chemistry , Zea mays/genetics , Zea mays/metabolism
4.
Plant Cell Environ ; 31(6): 813-27, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18284584

ABSTRACT

Heterosis is defined as the increased vigour of hybrids in comparison to their parents. We investigated 24 F(1) hybrid lines of Arabidopsis thaliana generated by reciprocally crossing either C24 or Col with six other parental accessions (Can, Co, Cvi, Ler, Rsch, Te) that differ widely in their freezing tolerance. The crosses differed in the degree of heterosis for freezing tolerance, both in the non-acclimated state and after a 14 d cold acclimation period. Crosses with C24 showed more heterosis than crosses with Col, and heterosis was stronger in acclimated than in non-acclimated plants. Leaf content of soluble sugars and proline showed more deviation from mid-parent values in crosses involving C24 than in those involving Col, and deviations were larger in acclimated than in non-acclimated plants. There were significant correlations between the content of different sugars and leaf freezing tolerance, as well as between heterosis effects in freezing tolerance and sugar content. Flavonoid content and composition varied between accessions, and between non-acclimated and acclimated plants. In the crosses, large deviations from the mid-parent values in the contents of different flavonols occurred, and there were strikingly strong correlations between both flavonol content and freezing tolerance, and between heterosis effects in freezing tolerance and flavonol content.


Subject(s)
Arabidopsis/genetics , Arabidopsis/physiology , Carbohydrates/chemistry , Flavonoids/chemistry , Hybrid Vigor/physiology , Acclimatization/genetics , Acclimatization/physiology , Crosses, Genetic , Freezing
5.
Z Naturforsch C J Biosci ; 58(11-12): 765-70, 2003.
Article in English | MEDLINE | ID: mdl-14713146

ABSTRACT

Fire blight, a devastating bacterial disease in pome fruits, causes severe economic losses worldwide. Hitherto, an effective control could only be achieved by using antibiotics, but this implies potential risks for human health, livestock and environment. A new approach allows transient inhibition of a step in the flavonoid pathway, thereby inducing the formation of a novel antimicrobial 3-deoxyflavonoid controlling fire blight in apple and pear leaves. This compound is closely related to natural phytoalexins in sorghum. The approach does not only provide a safe method to control fire blight: Resistance against different pathogens is also induced in other crop plants.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Flavonoids/biosynthesis , Flavonoids/therapeutic use , Fruit , Phytotherapy , Trees , Animals , Animals, Domestic , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/therapeutic use , Flavonoids/isolation & purification , Humans , Microbial Sensitivity Tests , Plant Growth Regulators/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...