Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Eur J Cancer ; 188: 183-191, 2023 07.
Article in English | MEDLINE | ID: mdl-37262986

ABSTRACT

BACKGROUND: Germline pathogenic variants (PVs) in BRCA1/2 genes are associated with breast cancer (BC) risk in both women and men. Multigene panel testing is being increasingly used for BC risk assessment, allowing the identification of PVs in genes other than BRCA1/2. While data on actionable PVs in other cancer susceptibility genes are now available in female BC, reliable data are still lacking in male BC (MBC). This study aimed to provide the patterns, prevalence and risk estimates associated with PVs in non-BRCA1/2 genes for MBC in order to improve BC prevention for male patients. METHODS: We performed a large case-control study in the Italian population, including 767 BRCA1/2-negative MBCs and 1349 male controls, all screened using a custom 50 cancer gene panel. RESULTS: PVs in genes other than BRCA1/2 were significantly more frequent in MBCs compared with controls (4.8% vs 1.8%, respectively) and associated with a threefold increased MBC risk (OR: 3.48, 95% CI: 1.88-6.44; p < 0.0001). PV carriers were more likely to have personal (p = 0.03) and family (p = 0.02) history of cancers, not limited to BC. PALB2 PVs were associated with a sevenfold increased MBC risk (OR: 7.28, 95% CI: 1.17-45.52; p = 0.034), and ATM PVs with a fivefold increased MBC risk (OR: 4.79, 95% CI: 1.12-20.56; p = 0.035). CONCLUSIONS: This study highlights the role of PALB2 and ATM PVs in MBC susceptibility and provides risk estimates at population level. These data may help in the implementation of multigene panel testing in MBC patients and inform gender-specific BC risk management and decision making for patients and their families.


Subject(s)
Breast Neoplasms, Male , Breast Neoplasms , Humans , Female , Male , Breast Neoplasms, Male/genetics , Genetic Predisposition to Disease , Case-Control Studies , Breast Neoplasms/genetics , Breast Neoplasms/epidemiology , Genes, BRCA1 , Risk Assessment
2.
NPJ Breast Cancer ; 9(1): 37, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173335

ABSTRACT

We assessed the PREDICT v 2.2 for prognosis of breast cancer patients with pathogenic germline BRCA1 and BRCA2 variants, using follow-up data from 5453 BRCA1/2 carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC). PREDICT for estrogen receptor (ER)-negative breast cancer had modest discrimination for BRCA1 carrier patients overall (Gönen & Heller unbiased concordance 0.65 in CIMBA, 0.64 in BCAC), but it distinguished clearly the high-mortality group from lower risk categories. In an analysis of low to high risk categories by PREDICT score percentiles, the observed mortality was consistently lower than the expected mortality, but the confidence intervals always included the calibration slope. Altogether, our results encourage the use of the PREDICT ER-negative model in management of breast cancer patients with germline BRCA1 variants. For the PREDICT ER-positive model, the discrimination was slightly lower in BRCA2 variant carriers (concordance 0.60 in CIMBA, 0.65 in BCAC). Especially, inclusion of the tumor grade distorted the prognostic estimates. The breast cancer mortality of BRCA2 carriers was underestimated at the low end of the PREDICT score distribution, whereas at the high end, the mortality was overestimated. These data suggest that BRCA2 status should also be taken into consideration with tumor characteristics, when estimating the prognosis of ER-positive breast cancer patients.

4.
Genet Med ; 24(1): 119-129, 2022 01.
Article in English | MEDLINE | ID: mdl-34906479

ABSTRACT

PURPOSE: Germline genetic testing for BRCA1 and BRCA2 variants has been a part of clinical practice for >2 decades. However, no studies have compared the cancer risks associated with missense pathogenic variants (PVs) with those associated with protein truncating (PTC) variants. METHODS: We collected 582 informative pedigrees segregating 1 of 28 missense PVs in BRCA1 and 153 pedigrees segregating 1 of 12 missense PVs in BRCA2. We analyzed 324 pedigrees with PTC variants in BRCA1 and 214 pedigrees with PTC variants in BRCA2. Cancer risks were estimated using modified segregation analysis. RESULTS: Estimated breast cancer risks were markedly lower for women aged >50 years carrying BRCA1 missense PVs than for the women carrying BRCA1 PTC variants (hazard ratio [HR] = 3.9 [2.4-6.2] for PVs vs 12.8 [5.7-28.7] for PTC variants; P = .01), particularly for missense PVs in the BRCA1 C-terminal domain (HR = 2.8 [1.4-5.6]; P = .005). In case of BRCA2, for women aged >50 years, the HR was 3.9 (2.0-7.2) for those heterozygous for missense PVs compared with 7.0 (3.3-14.7) for those harboring PTC variants. BRCA1 p.[Cys64Arg] and BRCA2 p.[Trp2626Cys] were associated with particularly low risks of breast cancer compared with other PVs. CONCLUSION: These results have important implications for the counseling of at-risk women who harbor missense PVs in the BRCA1/2 genes.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Genes, BRCA1 , Genes, BRCA2 , Genetic Predisposition to Disease , Genetic Testing/methods , Germ-Line Mutation/genetics , Humans , Middle Aged , Ovarian Neoplasms/genetics
6.
HGG Adv ; 2(3)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34317694

ABSTRACT

Familial, sequencing, and genome-wide association studies (GWASs) and genetic correlation analyses have progressively unraveled the shared or pleiotropic germline genetics of breast and ovarian cancer. In this study, we aimed to leverage this shared germline genetics to improve the power of transcriptome-wide association studies (TWASs) to identify candidate breast cancer and ovarian cancer susceptibility genes. We built gene expression prediction models using the PrediXcan method in 681 breast and 295 ovarian tumors from The Cancer Genome Atlas and 211 breast and 99 ovarian normal tissue samples from the Genotype-Tissue Expression project and integrated these with GWAS meta-analysis data from the Breast Cancer Association Consortium (122,977 cases/105,974 controls) and the Ovarian Cancer Association Consortium (22,406 cases/40,941 controls). The integration was achieved through application of a pleiotropy-guided conditional/conjunction false discovery rate (FDR) approach in the setting of a TWASs. This identified 14 candidate breast cancer susceptibility genes spanning 11 genomic regions and 8 candidate ovarian cancer susceptibility genes spanning 5 genomic regions at conjunction FDR < 0.05 that were >1 Mb away from known breast and/or ovarian cancer susceptibility loci. We also identified 38 candidate breast cancer susceptibility genes and 17 candidate ovarian cancer susceptibility genes at conjunction FDR < 0.05 at known breast and/or ovarian susceptibility loci. The 22 genes identified by our cross-cancer analysis represent promising candidates that further elucidate the role of the transcriptome in mediating germline breast and ovarian cancer risk.

7.
Int J Mol Sci ; 22(11)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072463

ABSTRACT

The NBN gene has been included in breast cancer (BC) multigene panels based on early studies suggesting an increased BC risk for carriers, though not confirmed by recent research. To evaluate the impact of NBN analysis, we assessed the results of NBN sequencing in 116 BRCA-negative BC patients and reviewed the literature. Three patients (2.6%) carried potentially relevant variants: two, apparently unrelated, carried the frameshift variant c.156_157delTT and another one the c.628G>T variant. The latter was subsequently found in 4/1390 (0.3%) BC cases and 8/1580 (0.5%) controls in an independent sample, which, together with in silico predictions, provided evidence against its pathogenicity. Conversely, the rare c.156_157delTT variant was absent in the case-control set; moreover, a 50% reduction of NBN expression was demonstrated in one carrier. However, in one family it failed to co-segregate with BC, while the other carrier was found to harbor also a probably pathogenic TP53 variant that may explain her phenotype. Therefore, the c.156_157delTT, although functionally deleterious, was not supported as a cancer-predisposing defect. Pathogenic/likely pathogenic NBN variants were detected by multigene panels in 31/12314 (0.25%) patients included in 15 studies. The risk of misinterpretation of such findings is substantial and supports the exclusion of NBN from multigene panels.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Cell Cycle Proteins/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Nuclear Proteins/genetics , Adult , Alleles , Case-Control Studies , DNA Mutational Analysis , Female , Gene Expression Regulation, Neoplastic , Genetic Association Studies/methods , Genetic Testing , Genotype , Haplotypes , Humans , Pedigree
8.
Cancers (Basel) ; 13(3)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573335

ABSTRACT

Germline pathogenic variants (PVs) in the BRCA1 or BRCA2 genes cause high breast cancer risk. Recurrent or founder PVs have been described worldwide including some in the Bergamo province in Northern Italy. The aim of this study was to compare the BRCA1/2 PV spectra of the Bergamo and of the general Italian populations. We retrospectively identified at five Italian centers 1019 BRCA1/2 PVs carrier individuals affected with breast cancer and representative of the heterogeneous national population. Each individual was assigned to the Bergamo or non-Bergamo cohort based on self-reported birthplace. Our data indicate that the Bergamo BRCA1/2 PV spectrum shows less heterogeneity with fewer different variants and an average higher frequency compared to that of the rest of Italy. Consistently, four PVs explained about 60% of all carriers. The majority of the Bergamo PVs originated locally with only two PVs clearly imported. The Bergamo BRCA1/2 PV spectrum appears to be private. Hence, the Bergamo population would be ideal to study the disease risk associated with local PVs in breast cancer and other disease-causing genes. Finally, our data suggest that the Bergamo population is a genetic isolate and further analyses are warranted to prove this notion.

9.
Article in English | MEDLINE | ID: mdl-32954205

ABSTRACT

PURPOSE: Women with breast cancer have a 4%-16% lifetime risk of a second primary cancer. Whether mutations in genes other than BRCA1/2 are enriched in patients with breast and another primary cancer over those with a single breast cancer (S-BC) is unknown. PATIENTS AND METHODS: We identified pathogenic germline mutations in 17 cancer susceptibility genes in patients with BRCA1/2-negative breast cancer in 2 different cohorts: cohort 1, high-risk breast cancer program (multiple primary breast cancer [MP-BC], n = 551; S-BC, n = 449) and cohort 2, familial breast cancer research study (MP-BC, n = 340; S-BC, n = 1,464). Mutation rates in these 2 cohorts were compared with a control data set (Exome Aggregation Consortium [ExAC]). RESULTS: Overall, pathogenic mutation rates for autosomal, dominantly inherited genes were higher in patients with MP-BC versus S-BC in both cohorts (8.5% v 4.9% [P = .02] and 7.1% v 4.2% [P = .03]). There were differences in individual gene mutation rates between cohorts. In both cohorts, younger age at first breast cancer was associated with higher mutation rates; the age of non-breast cancers was unrelated to mutation rate. TP53 and MSH6 mutations were significantly enriched in patients with MP-BC but not S-BC, whereas ATM and PALB2 mutations were significantly enriched in both groups compared with ExAC. CONCLUSION: Mutation rates are at least 7% in all patients with BRCA1/2 mutation-negative MP-BC, regardless of age at diagnosis of breast cancer, with mutation rates up to 25% in patients with a first breast cancer diagnosed at age < 30 years. Our results suggest that all patients with breast cancer with a second primary cancer, regardless of age of onset, should undergo multigene panel testing.

12.
Sci Rep ; 9(1): 12524, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31467304

ABSTRACT

Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.


Subject(s)
Breast Neoplasms/genetics , Fanconi Anemia Complementation Group C Protein/genetics , Sequence Deletion , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/metabolism , Case-Control Studies , Fanconi Anemia/genetics , Fanconi Anemia Complementation Group C Protein/metabolism , Female , Genetic Predisposition to Disease , Genetic Variation , Humans
13.
NPJ Breast Cancer ; 5: 23, 2019.
Article in English | MEDLINE | ID: mdl-31428676

ABSTRACT

Mono-allelic germline pathogenic variants in the Partner And Localizer of BRCA2 (PALB2) gene predispose to a high-risk of breast cancer development, consistent with the role of PALB2 in homologous recombination (HR) DNA repair. Here, we sought to define the repertoire of somatic genetic alterations in PALB2-associated breast cancers (BCs), and whether PALB2-associated BCs display bi-allelic inactivation of PALB2 and/or genomic features of HR-deficiency (HRD). Twenty-four breast cancer patients with pathogenic PALB2 germline mutations were analyzed by whole-exome sequencing (WES, n = 16) or targeted capture massively parallel sequencing (410 cancer genes, n = 8). Somatic genetic alterations, loss of heterozygosity (LOH) of the PALB2 wild-type allele, large-scale state transitions (LSTs) and mutational signatures were defined. PALB2-associated BCs were found to be heterogeneous at the genetic level, with PIK3CA (29%), PALB2 (21%), TP53 (21%), and NOTCH3 (17%) being the genes most frequently affected by somatic mutations. Bi-allelic PALB2 inactivation was found in 16 of the 24 cases (67%), either through LOH (n = 11) or second somatic mutations (n = 5) of the wild-type allele. High LST scores were found in all 12 PALB2-associated BCs with bi-allelic PALB2 inactivation sequenced by WES, of which eight displayed the HRD-related mutational signature 3. In addition, bi-allelic inactivation of PALB2 was significantly associated with high LST scores. Our findings suggest that the identification of bi-allelic PALB2 inactivation in PALB2-associated BCs is required for the personalization of HR-directed therapies, such as platinum salts and/or PARP inhibitors, as the vast majority of PALB2-associated BCs without PALB2 bi-allelic inactivation lack genomic features of HRD.

14.
Endocr Connect ; 8(8): 1224-1229, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31336362

ABSTRACT

Breast cancer in men is a rare and still poorly characterized disease. Inherited mutations in BRCA1, BRCA2 and PALB2 genes, as well as common polymorphisms, play a role in male breast cancer genetic predisposition. Male breast cancer is considered a hormone-dependent tumor specifically related to hyperestrogenism. Polymorphisms in genes involved in estrogen biosynthesis and metabolism pathways, such as CYP17A1 and CYP1B1, have been associated with breast cancer risk. Here, we aimed to investigate the role of CYP17A1 and CYP1B1 polymorphisms in male breast cancer risk. A series of 597 male breast cancer cases and 1022 male controls, recruited within the Italian Multicenter Study on male breast cancer, was genotyped for CYP17A1 rs743572, CYP1B1 rs1056836 and rs1800440 polymorphisms by allelic discrimination real-time PCR with TaqMan probes. Associations with male breast cancer risk were estimated using logistic regression. No statistically significant associations between male breast cancer risk and the three analyzed polymorphisms emerged. Similar results were obtained also when BRCA1/2 mutational status was considered. No significant differences in the distribution of the genotypes according to estrogen receptor status emerged. In conclusion, our study, based on a large series of male breast cancer cases, is likely to exclude a relevant role of CYP17A1 and CYP1B1 polymorphisms in male breast cancer predisposition. Overall, these results add new data to the increasing evidence that polymorphisms in these genes may not be associated with breast cancer risk.

15.
Hum Mutat ; 40(11): e1-e23, 2019 11.
Article in English | MEDLINE | ID: mdl-31209999

ABSTRACT

BRCA1 BRCA2 mutational spectrum in the Middle East, North Africa, and Southern Europe is not well characterized. The unique history and cultural practices characterizing these regions, often involving consanguinity and inbreeding, plausibly led to the accumulation of population-specific founder pathogenic sequence variants (PSVs). To determine recurring BRCA PSVs in these locales, a search in PUBMED, EMBASE, BIC, and CIMBA was carried out combined with outreach to researchers from the relevant countries for unpublished data. We identified 232 PSVs in BRCA1 and 239 in BRCA2 in 25 of 33 countries surveyed. Common PSVs that were detected in four or more countries were c.5266dup (p.Gln1756Profs), c.181T>G (p.Cys61Gly), c.68_69del (p.Glu23Valfs), c.5030_5033del (p.Thr1677Ilefs), c.4327C>T (p.Arg1443Ter), c.5251C>T (p.Arg1751Ter), c.1016dup (p.Val340Glyfs), c.3700_3704del (p.Val1234Glnfs), c.4065_4068del (p.Asn1355Lysfs), c.1504_1508del (p.Leu502Alafs), c.843_846del (p.Ser282Tyrfs), c.798_799del (p.Ser267Lysfs), and c.3607C>T (p.Arg1203Ter) in BRCA1 and c.2808_2811del (p.Ala938Profs), c.5722_5723del (p.Leu1908Argfs), c.9097dup (p.Thr3033Asnfs), c.1310_1313del (p. p.Lys437Ilefs), and c.5946del (p.Ser1982Argfs) for BRCA2. Notably, some mutations (e.g., p.Asn257Lysfs (c.771_775del)) were observed in unrelated populations. Thus, seemingly genotyping recurring BRCA PSVs in specific populations may provide first pass BRCA genotyping platform.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Genetic Predisposition to Disease , Genetic Variation , Population Groups/genetics , Africa, Northern , Alleles , Black People , Data Mining , Databases, Genetic , Europe , Genotype , Humans , Middle East , Research Design , White People
16.
Int J Cancer ; 145(2): 390-400, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30613976

ABSTRACT

Breast cancer (BC) in men is rare and genetic predisposition is likely to play a relevant role in its etiology. Inherited mutations in BRCA1/2 account for about 13% of all cases and additional genes that may contribute to the missing heritability need to be investigated. In our study, a well-characterized series of 523 male BC (MBC) patients from the Italian multicenter study on MBC, enriched for non-BRCA1/2 MBC cases, was screened by a multigene custom panel of 50 cancer-associated genes. The main clinical-pathologic characteristics of MBC in pathogenic variant carriers and non-carriers were also compared. BRCA1/2 pathogenic variants were detected in twenty patients, thus, a total of 503 non-BRCA1/2 MBC patients were examined in our study. Twenty-seven of the non-BRCA1/2 MBC patients were carriers of germline pathogenic variants in other genes, including two APC p.Ile1307Lys variant carriers and one MUTYH biallelic variant carrier. PALB2 was the most frequently altered gene (1.2%) and PALB2 pathogenic variants were significantly associated with high risk of MBC. Non-BRCA1/2 pathogenic variant carriers were more likely to have personal (p = 0.0005) and family (p = 0.007) history of cancer. Results of our study support a central role of PALB2 in MBC susceptibility and show a low impact of CHEK2 on MBC predisposition in the Italian population. Overall, our data indicate that a multigene testing approach may benefit from appropriately selected patients with implications for clinical management and counseling of MBC patients and their family members.


Subject(s)
Breast Neoplasms, Male/genetics , Checkpoint Kinase 2/genetics , Fanconi Anemia Complementation Group N Protein/genetics , Mutation , Sequence Analysis, DNA/methods , Adenomatous Polyposis Coli Protein/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , DNA Glycosylases/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Italy , Male , Middle Aged , Young Adult
17.
Front Oncol ; 8: 583, 2018.
Article in English | MEDLINE | ID: mdl-30564557

ABSTRACT

Inherited mutations in BRCA1, and, mainly, BRCA2 genes are associated with increased risk of male breast cancer (MBC). Mutations in PALB2 and CHEK2 genes may also increase MBC risk. Overall, these genes are functionally linked to DNA repair pathways, highlighting the central role of genome maintenance in MBC genetic predisposition. MUTYH is a DNA repair gene whose biallelic germline variants cause MUTYH-associated polyposis (MAP) syndrome. Monoallelic MUTYH variants have been reported in families with both colorectal and breast cancer and there is some evidence on increased breast cancer risk in women with monoallelic variants. In this study, we aimed to investigate whether MUTYH germline variants may contribute to MBC susceptibility. To this aim, we screened the entire coding region of MUTYH in 503 BRCA1/2 mutation negative MBC cases by multigene panel analysis. Moreover, we genotyped selected variants, including p.Tyr179Cys, p.Gly396Asp, p.Arg245His, p.Gly264Trpfs*7, and p.Gln338His, in a total of 560 MBC cases and 1,540 male controls. Biallelic MUTYH pathogenic variants (p.Tyr179Cys/p.Arg241Trp) were identified in one MBC patient with phenotypic manifestation of adenomatous polyposis. Monoallelic pathogenic variants were identified in 14 (2.5%) MBC patients, in particular, p.Tyr179Cys was detected in seven cases, p.Gly396Asp in five cases, p.Arg245His and p.Gly264Trpfs*7 in one case each. The majority of MBC cases with MUTYH pathogenic variants had family history of cancer including breast, colorectal, and gastric cancers. In the case-control study, an association between the variant p.Tyr179Cys and increased MBC risk emerged by multivariate analysis [odds ratio (OR) = 4.54; 95% confidence interval (CI): 1.17-17.58; p = 0.028]. Overall, our study suggests that MUTYH pathogenic variants may have a role in MBC and, in particular, the p.Tyr179Cys variant may be a low/moderate penetrance risk allele for MBC. Moreover, our results suggest that MBC may be part of the tumor spectrum associated with MAP syndrome, with implication in the clinical management of patients and their relatives. Large-scale collaborative studies are needed to validate these findings.

18.
Front Oncol ; 8: 480, 2018.
Article in English | MEDLINE | ID: mdl-30410870

ABSTRACT

PALB2 (partner and localizer of BRCA2) was initially identified as a binding partner of BRCA2. It interacts also with BRCA1 forming a complex promoting DNA repair by homologous recombination. Germline pathogenic variants in BRCA1, BRCA2 and PALB2 DNA repair genes are associated with high risk of developing breast cancer. Mutation screening in these breast cancer predisposition genes is routinely performed and allows the identification of individuals who carry pathogenic variants and are at risk of developing the disease. However, variants of uncertain significance (VUSs) are often detected and establishing their pathogenicity and clinical relevance remains a central challenge for the risk assessment of the carriers and the clinical decision-making process. Many of these VUSs are missense variants leading to single amino acid substitutions, whose impact on protein function is uncertain. Typically, VUSs are rare and due to the limited genetic, clinical, and pathological data the multifactorial approaches used for classification cannot be applied. Thus, these variants can only be characterized through functional analyses comparing their effect with that of normal and mutant gene products used as positive and negative controls. The two missense variants BRCA2:c.91T >G (p.Trp31Gly) and PALB2:c.3262C >T (p.Pro1088Ser) were detected in two breast cancer probands originally ascertained at Breast Cancer Units of Institutes located in Milan and Bergamo (Northern Italy), respectively. These variants were located in the BRCA2-PALB2 interacting domains, were predicted to be deleterious by in silico analyses, and were very rare and clinically not classified. Therefore, we initiate to study their functional effect by exploiting a green fluorescent protein (GFP)-reassembly in vitro assay specifically designed to test the BRCA2-PALB2 interaction. This functional assay proved to be easy to develop, robust and reliable. It also allows testing variants located in different genes. Results from these functional analyses showed that the BRCA2:p.Trp31Gly and the PALB2:p.Pro1088Ser prevented the BRCA2-PALB2 binding. While caution is warranted when the interpretation of the clinical significance of rare VUSs is based on functional studies only, our data provide initial evidences in favor of the possibility that these variants are pathogenic.

19.
Hum Mutat ; 39(12): 2025-2039, 2018 12.
Article in English | MEDLINE | ID: mdl-30204945

ABSTRACT

The widespread use of next generation sequencing for clinical testing is detecting an escalating number of variants in noncoding regions of the genome. The clinical significance of the majority of these variants is currently unknown, which presents a significant clinical challenge. We have screened over 6,000 early-onset and/or familial breast cancer (BC) cases collected by the ENIGMA consortium for sequence variants in the 5' noncoding regions of BC susceptibility genes BRCA1 and BRCA2, and identified 141 rare variants with global minor allele frequency < 0.01, 76 of which have not been reported previously. Bioinformatic analysis identified a set of 21 variants most likely to impact transcriptional regulation, and luciferase reporter assays detected altered promoter activity for four of these variants. Electrophoretic mobility shift assays demonstrated that three of these altered the binding of proteins to the respective BRCA1 or BRCA2 promoter regions, including NFYA binding to BRCA1:c.-287C>T and PAX5 binding to BRCA2:c.-296C>T. Clinical classification of variants affecting promoter activity, using existing prediction models, found no evidence to suggest that these variants confer a high risk of disease. Further studies are required to determine if such variation may be associated with a moderate or low risk of BC.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Germ-Line Mutation , Promoter Regions, Genetic , 5' Untranslated Regions , Age of Onset , BRCA1 Protein/chemistry , BRCA1 Protein/metabolism , BRCA2 Protein/chemistry , BRCA2 Protein/metabolism , CCAAT-Binding Factor/metabolism , Cell Line, Tumor , Female , Genetic Predisposition to Disease , Humans , MCF-7 Cells , PAX5 Transcription Factor/metabolism , Protein Binding
20.
Nat Commun ; 9(1): 967, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29511213

ABSTRACT

BRCA1 is a tumor suppressor that regulates DNA repair by homologous recombination. Germline mutations in BRCA1 are associated with increased risk of breast and ovarian cancer and BRCA1 deficient tumors are exquisitely sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. Therefore, uncovering additional components of this DNA repair pathway is of extreme importance for further understanding cancer development and therapeutic vulnerabilities. Here, we identify EDC4, a known component of processing-bodies and regulator of mRNA decapping, as a member of the BRCA1-BRIP1-TOPBP1 complex. EDC4 plays a key role in homologous recombination by stimulating end resection at double-strand breaks. EDC4 deficiency leads to genome instability and hypersensitivity to DNA interstrand cross-linking drugs and PARP inhibitors. Lack-of-function mutations in EDC4 were detected in BRCA1/2-mutation-negative breast cancer cases, suggesting a role in breast cancer susceptibility. Collectively, this study recognizes EDC4 with a dual role in decapping and DNA repair whose inactivation phenocopies BRCA1 deficiency.


Subject(s)
BRCA1 Protein/metabolism , Breast Neoplasms/metabolism , DNA Repair , Proteins/metabolism , BRCA1 Protein/genetics , Breast Neoplasms/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Homologous Recombination , Humans , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Protein Binding , Proteins/genetics , RNA Caps/genetics , RNA Caps/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...