Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cancers (Basel) ; 13(20)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34680183

ABSTRACT

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has provided some of the most in-depth analyses of the phenotypes of human tumors ever constructed. Today, the majority of proteomic data analysis is still performed using software housed on desktop computers which limits the number of sequence variants and post-translational modifications that can be considered. The original CPTAC studies limited the search for PTMs to only samples that were chemically enriched for those modified peptides. Similarly, the only sequence variants considered were those with strong evidence at the exon or transcript level. In this multi-institutional collaborative reanalysis, we utilized unbiased protein databases containing millions of human sequence variants in conjunction with hundreds of common post-translational modifications. Using these tools, we identified tens of thousands of high-confidence PTMs and sequence variants. We identified 4132 phosphorylated peptides in nonenriched samples, 93% of which were confirmed in the samples which were chemically enriched for phosphopeptides. In addition, our results also cover 90% of the high-confidence variants reported by the original proteogenomics study, without the need for sample specific next-generation sequencing. Finally, we report fivefold more somatic and germline variants that have an independent evidence at the peptide level, including mutations in ERRB2 and BCAS1. In this reanalysis of CPTAC proteomic data with cloud computing, we present an openly available and searchable web resource of the highest-coverage proteomic profiling of human tumors described to date.

2.
J Proteomics ; 175: 27-33, 2018 03 20.
Article in English | MEDLINE | ID: mdl-28780057

ABSTRACT

Measurement of insulin and its therapeutic analogs is important in diabetes, hypoglycemia, sports anti-doping and toxicology. Commercial insulin immunoassays fail to detect commonly prescribed insulin analogs. Because of their unique sequences and masses, these analogs are readily measured and distinguished with mass spectrometric (MS) assays. Reviewed here is an insulin mass spectrometric immunoassay (MSIA) that combines micro-scale immunoaffinity capture with sensitive MS detection of insulin and its therapeutic analogs. An antibody reactive to all insulin analogs was used to affinity capture the insulin analogs. Following elution, insulins were detected with MALDI-TOF MS or LC-MS analysis. Isotopic resolution for insulin was achieved for both MS techniques, and several insulin analogs were detected at unique m/z signals. Porcine insulin, spiked in all samples, served as an internal reference standard for quantification. Linear standard curves spanning three orders of magnitude were obtained, with limits of detection of 15pM for the MALDI-TOF MS and 1.5pM for the LC-MS. This insulin assay was capable of detecting and quantifying not only human endogenous insulin, but also most of the therapeutic insulin analogs, which could find use in diagnosis of severe hypoglycemia and in sports anti-doping. SIGNIFICANCE: Insulin replacement therapy consists of injection of long- or fast-acting insulin analogs with slightly modified primary sequences compared to human insulin. Assays that are capable of detecting all insulin analogs are desired, not only for medical management of diabetes and severe hypoglycemia but also for sports anti-doping and toxicology.


Subject(s)
Immunoassay/methods , Insulin/analysis , Mass Spectrometry/methods , Animals , Antibodies , Computational Biology , Diabetes Mellitus/drug therapy , Doping in Sports , Humans , Hypoglycemia/drug therapy , Insulin/analogs & derivatives , Insulin/standards , Insulin, Regular, Pork/analysis , Protein Multimerization , Swine
3.
Radiat Res ; 189(2): 136-145, 2018 02.
Article in English | MEDLINE | ID: mdl-29206597

ABSTRACT

NASA is planning future missions to Mars, which will result in astronauts being exposed to ∼13 cGy/year of galactic cosmic radiation (GCR). Previous ground-based experiments have demonstrated that low (15 cGy) doses of 1 GeV/n 56Fe ions impair hippocampus-dependent spatial memory in rats. However, some irradiated rats maintain a spatial memory performance comparable to that seen in the sham-irradiated rats, suggesting that some of these animals are able to ameliorate the deleterious effects of the GCR, while others are not. This rat model provides a unique opportunity to increase our understanding of how GCR affects neurophysiology, what adaptive responses can be invoked to prevent the emergence of GCR-induced spatial memory impairment, as well as the pathways that are altered when spatial memory impairment occurs. A label-free, unbiased proteomic profiling approach involving quantitative protein/peptide profiling followed by Cytoscape analysis has established the composition of the hippocampal proteome in male Wistar rats after exposure to 15 cGy of 1 GeV/n 56Fe, and identified proteins whose expression is altered with respect to: 1. radiation exposure and 2. impaired spatial memory performance. We identified 30 proteins that were classified as "GCR exposure marker" (GEM) proteins (expressed solely or at higher levels in the irradiated rats but not related to spatial memory performance), most notably CD98, Cadps and GMFB. Conversely, there were 252 proteins that were detected only in the sham-irradiated samples, i.e., they were not detected in either of the irradiated cohorts; of these 10% have well-documented roles in neurotransmission. The second aspect of our data mining was to identify proteins whose expression was associated with either impaired or functional spatial memory. While there are multiple changes in the hippocampal proteome in the irradiated rats that have impaired spatial memory performance, with 203 proteins being detected (or upregulated) only in these rats, it would appear that spatial memory impairment may also arise from an inability of these rats to express "good spatial memory" (GSM) proteins, many of which play an important role in neuronal homeostasis and function, axonogenesis, presynaptic membrane organization and G-protein coupled receptor (GCPR) signaling. It may be possible to use this knowledge to develop two alternative countermeasure strategies, one that preserves critical pathways prophylactically and one that invokes restorative pathways after GCR exposure.


Subject(s)
Cosmic Radiation/adverse effects , Hippocampus/physiology , Hippocampus/radiation effects , Proteomics , Spatial Memory/radiation effects , Animals , Male , Rats , Rats, Wistar
5.
Sci Signal ; 8(380): rs6, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26060331

ABSTRACT

A major goal in signaling biology is the establishment of high-throughput quantitative methods for measuring changes in protein phosphorylation of entire signal transduction pathways across many different samples comprising temporal or dose data or patient samples. Data-independent acquisition (DIA) mass spectrometry (MS) methods, which involve tandem MS scans that are collected independently of precursor ion information and then are followed by targeted searching for known peptides, may achieve this goal. We applied DIA-MS to systematically quantify phosphorylation of components in the insulin signaling network in response to insulin as well as in stimulated cells exposed to a panel of kinase inhibitors targeting key downstream effectors in the network. We accurately quantified the effect of insulin on phosphorylation of 86 protein targets in the insulin signaling network using either stable isotope standards (SIS) or label-free quantification (LFQ) and mapped signal transmission through this network. By matching kinases to specific phosphorylation events (based on linear consensus motifs and temporal phosphorylation) to the quantitative phosphoproteomic data from cells exposed to inhibitors, we investigated predicted kinase-substrate relationships of AKT and mTOR in a targeted fashion. Furthermore, we applied this approach to show that AKT2-dependent phosphorylation of GAB2 promoted insulin signaling but inhibited epidermal growth factor (EGF) signaling in a manner dependent on 14-3-3 binding. Because DIA-MS can increase throughput and improve the reproducibility of peptide detection across multiple samples, this approach should facilitate more accurate, comprehensive, and quantitative assessment of signaling networks under various experimental conditions than are possible using other MS proteomic methods.


Subject(s)
Insulin/metabolism , Phosphoproteins/metabolism , Proteomics/methods , Signal Transduction , Tandem Mass Spectrometry/methods , 14-3-3 Proteins/metabolism , 3T3-L1 Cells , Adaptor Proteins, Signal Transducing/metabolism , Animals , Blotting, Western , Enzyme Inhibitors/pharmacology , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , HEK293 Cells , Humans , Insulin/pharmacology , Mice , Phosphopeptides/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Serine/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Threonine/metabolism
6.
Methods ; 81: 41-9, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25782629

ABSTRACT

Cancer biologists and other healthcare researchers face an increasing challenge in addressing the molecular complexity of disease. Biomarker measurement tools and techniques now contribute to both basic science and translational research. In particular, liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) for multiplexed measurements of protein biomarkers has emerged as a versatile tool for systems biology. Assays can be developed for specific peptides that report on protein expression, mutation, or post-translational modification; discovery proteomics data rapidly translated into multiplexed quantitative approaches. Complementary advances in affinity purification enrich classes of enzymes or peptides representing post-translationally modified or chemically labeled substrates. Here, we illustrate the process for the relative quantification of hundreds of peptides in a single LC-MRM experiment. Desthiobiotinylated peptides produced by activity-based protein profiling (ABPP) using ATP probes and tyrosine-phosphorylated peptides are used as examples. These targeted quantification panels can be applied to further understand the biology of human disease.


Subject(s)
Adenosine Triphosphate/metabolism , Chromatography, Liquid/methods , Mass Spectrometry/methods , Protein Kinases/metabolism , Protein Processing, Post-Translational , Tyrosine/metabolism , Biomarkers/analysis , Humans , Peptides/metabolism , Phosphorylation , Proteins/analysis , Proteins/metabolism , Proteomics/methods
7.
Clin Proteomics ; 12(1): 2, 2015.
Article in English | MEDLINE | ID: mdl-25678897

ABSTRACT

BACKGROUND: The anatomy of PFO suggests that it can allow thrombi and potentially harmful circulatory factors to travel directly from the venous to the arterial circulation - altering circulatory phenotype. Our previous publication using high-resolution LC-MS/MS to profile protein and peptide expression patterns in plasma showed that albumin was relatively increased in donor samples from PFO-related than other types of ischemic strokes. Since albumin binds a host of molecules and acts as a carrier for lipoproteins, small molecules and drugs, we decided to investigate the albumin-bound proteins (in a similar sample cohort) in an effort to unravel biological changes and potentially discover biomarkers related to PFO-related stroke and PFO endovascular closure. METHODS: The method used in this study combined albumin immuno-enrichment with high resolution LC-MS in order to specifically capture and quantify the albumin-bound proteins. Subsequently, we measured cholesterol and HDL in a larger, separate cohort of PFO stroke patients, pre and post closure. RESULTS: The results demonstrated that a number of proteins were specifically associated with albumin in samples with and without endovascular closure of the PFO, and that the protein profiles were very different. Eight proteins, typically associated with HDL were common to both sample sets and quantitatively differently abundant. Pathway analysis of the MS results suggested that enhanced cholesterol efflux and reduced lipid oxidation were associated with PFO closure. Measurement of total cholesterol and HDL in a larger cohort of PFO closure samples using a colorimetric assay was consistent with the proteomic predictions. CONCLUSIONS: The collective data presented in this study demonstrate that analysis of albumin-bound proteins could provide a valuable tool for biomarker discovery on the effects of PFO endovascular closure. In addition, the results suggest that PFO endovascular closure can potentially have effects on HDL, cholesterol and albumin-bound ApoA-I abundance, therefore possibly providing benefits in cardioprotective functions.

8.
J Proteome Res ; 13(12): 5415-30, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25244318

ABSTRACT

Data-dependent acquisition (DDA) and data-independent acquisition strategies (DIA) have both resulted in improved understanding of proteomics samples. Both strategies have advantages and disadvantages that are well-published, where DDA is typically applied for deep discovery and DIA may be used to create sample records. In this paper, we present a hybrid data acquisition and processing strategy (pSMART) that combines the strengths of both techniques and provides significant benefits for qualitative and quantitative peptide analysis. The performance of pSMART is compared to published DIA strategies in an experiment that allows the objective assessment of DIA performance with respect to interrogation of previously acquired MS data. The results of this experiment demonstrate that pSMART creates fewer decoy hits than a standard DIA strategy. Moreover, we show that pSMART is more selective, sensitive, and reproducible than either standard DIA or DDA strategies alone.


Subject(s)
Electronic Data Processing/methods , Peptides/analysis , Proteome/analysis , Proteomics/methods , Amino Acid Sequence , Chromatography, Liquid/methods , Mass Spectrometry/methods , Molecular Sequence Data , Peptides/metabolism , Proteome/metabolism , Reproducibility of Results , Software
9.
Proteomics ; 14(12): 1445-56, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24668948

ABSTRACT

The detection and quantification of insulin and its therapeutic analogs is important for medical, sports doping, and forensic applications. Synthetic variants contain slight sequence variations to affect bioavailability. To reduce sample handling bias, a universal extraction method is required for simultaneous extraction of endogenous and variant insulins with subsequent targeted quantification by LC-MS. A mass spectrometric immunoassay (MSIA), a multiplexed assay for intact insulin and its analogues that couples immunoenrichment with high resolution and accurate mass (HR/AM) spectrometric detection across the clinical range is presented in this report. The assay is sensitive, selective, semi-automated and can potentially be applied to detect new insulin isoforms allowing their further incorporation into second or third generation assays.


Subject(s)
Chromatography, Liquid/methods , High-Throughput Screening Assays , Immunoassay/methods , Insulin/analogs & derivatives , Insulin/blood , Proteomics , Tandem Mass Spectrometry/methods , Humans , Protein Isoforms
10.
PLoS One ; 8(11): e81125, 2013.
Article in English | MEDLINE | ID: mdl-24278387

ABSTRACT

Insulin-like growth factor 1 (IGF1) is an important biomarker of human growth disorders that is routinely analyzed in clinical laboratories. Mass spectrometry-based workflows offer a viable alternative to standard IGF1 immunoassays, which utilize various pre-analytical preparation strategies. In this work we developed an assay that incorporates a novel sample preparation method for dissociating IGF1 from its binding proteins. The workflow also includes an immunoaffinity step using antibody-derivatized pipette tips, followed by elution, trypsin digestion, and LC-MS/MS separation and detection of the signature peptides in a selected reaction monitoring (SRM) mode. The resulting quantitative mass spectrometric immunoassay (MSIA) exhibited good linearity in the range of 1 to 1,500 ng/mL IGF1, intra- and inter-assay precision with CVs of less than 10%, and lowest limits of detection of 1 ng/mL. The linearity and recovery characteristics of the assay were also established, and the new method compared to a commercially available immunoassay using a large cohort of human serum samples. The IGF1 SRM MSIA is well suited for use in clinical laboratories.


Subject(s)
Immunoassay/methods , Insulin-Like Growth Factor I/metabolism , Mass Spectrometry/methods , Biomarkers/blood , Humans , Immunoassay/standards , Insulin-Like Growth Factor I/chemistry , Mass Spectrometry/standards , Reference Standards , Reference Values , Reproducibility of Results , Sensitivity and Specificity
11.
Clin Biochem ; 46(6): 399-410, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23313081

ABSTRACT

OBJECTIVES: The aim of this study was to develop high-throughput, quantitative and highly selective mass spectrometric, targeted immunoassays for clinically important proteins in human plasma or serum. DESIGN AND METHODS: The described method coupled mass spectrometric immunoassay (MSIA), a previously developed technique for immunoenrichment on a monolithic microcolumn activated with an anti-protein antibody and fixed in a pipette tip, to selected reaction monitoring (SRM) detection and accurate quantification of targeted peptides, including clinically relevant sequence or truncated variants. RESULTS: In this report, we demonstrate the rapid development of MSIA-SRM assays for sixteen different target proteins spanning seven different clinically important areas (including neurological, Alzheimer's, cardiovascular, endocrine function, cancer and other diseases) and ranging in concentration from pg/mL to mg/mL. The reported MSIA-SRM assays demonstrated high sensitivity (within published clinical ranges), precision, robustness and high-throughput as well as specific detection of clinically relevant isoforms for many of the target proteins. Most of the assays were tested with bona-fide clinical samples. In addition, positive correlations, (R2 0.67-0.87, depending on the target peptide), were demonstrated for MSIA-SRM assay data with clinical analyzer measurements of parathyroid hormone (PTH) and insulin growth factor 1 (IGF1) in clinical sample cohorts. CONCLUSIONS: We have presented a practical and scalable method for rapid development and deployment of MS-based SRM assays for clinically relevant proteins and measured levels of the target analytes in bona fide clinical samples. The method permits the specific quantification of individual protein isoforms and addresses the difficult problem of protein heterogeneity in clinical proteomics applications.


Subject(s)
Blood Proteins/isolation & purification , High-Throughput Screening Assays , Immunoassay/methods , Mass Spectrometry/methods , Alzheimer Disease/blood , Cardiovascular Diseases/blood , Growth Disorders/blood , Humans , Neoplasms/blood , Renal Insufficiency/blood
12.
J Investig Med ; 60(8): 1122-30, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23147404

ABSTRACT

Patent foramen ovale (PFO) is highly prevalent and associated with more than 150,000 strokes per year. Traditionally, it is thought that PFOs facilitate strokes by allowing venous clots to travel directly to the brain. However, only a small portion of PFO stroke patients have a known tendency to form blood clots, and the optimal treatment for this multiorgan disease is unclear. Therefore, mapping the changes in systemic circulation of PFO-related stroke is crucial in understanding the pathophysiology to individualize the best clinical treatment for each patient. We initiated a study using a novel quantitative, 2-pass discovery workflow using high-resolution liquid chromatography-mass spectrometry/mass spectrometry coupled with label-free analysis to track protein expression in PFO patients before and after endovascular closure of the PFO. Using this approach, we were able to demonstrate quantitative differences in protein expression between both PFO-related and non-PFO-related ischemic stroke groups as well as before and after PFO closure. As an initial step in understanding the molecular landscape of PFO-related physiology, our methods have yielded biologically relevant information on the synergistic and functional redundancy of various cell-signaling molecules with respect to PFO circulatory physiology. The resulting protein expression patterns were related to canonical pathways including prothrombin activation, atherosclerosis signaling, acute-phase response, LXR/RXR activation, and coagulation system. In particular, after PFO closure, numerous proteins demonstrated reduced expression in stroke-related canonical pathways such as acute inflammatory response and coagulation signaling. These findings demonstrate the feasibility and robustness of using a proteomic approach for biomarker discovery to help gauge therapeutic efficacy in stroke.


Subject(s)
Foramen Ovale, Patent/blood , Gene Expression Regulation , Proteomics/methods , Signal Transduction/physiology , Stroke/blood , Tandem Mass Spectrometry , Adult , Brain/physiology , Chromatography, Liquid/methods , Cohort Studies , Female , Foramen Ovale, Patent/epidemiology , Foramen Ovale, Patent/surgery , Heart/physiology , Humans , Male , Middle Aged , Stroke/epidemiology , Tandem Mass Spectrometry/methods , Young Adult
13.
Proteomics ; 12(8): 1122-33, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22577013

ABSTRACT

Large-scale proteomics applications using SRM analysis on triple quadrupole mass spectrometers present new challenges to LC-MS/MS experimental design. Despite the automation of building large-scale LC-SRM methods, the increased numbers of targeted peptides can compromise the balance between sensitivity and selectivity. To facilitate large target numbers, time-scheduled SRM transition acquisition is performed. Previously published results have demonstrated incorporation of a well-characterized set of synthetic peptides enabled chromatographic characterization of the elution profile for most endogenous peptides. We have extended this application of peptide trainer kits to not only build SRM methods but to facilitate real-time elution profile characterization that enables automated adjustment of the scheduled detection windows. Incorporation of dynamic retention time adjustments better facilitate targeted assays lasting several days without the need for constant supervision. This paper provides an overview of how the dynamic retention correction approach identifies and corrects for commonly observed LC variations. This adjustment dramatically improves robustness in targeted discovery experiments as well as routine quantification experiments.


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/methods , Peptides/analysis , Proteomics/methods , Amino Acid Sequence , Calibration , Cell Extracts , Chromatography, Liquid/instrumentation , Chromatography, Liquid/standards , Humans , Mass Spectrometry/instrumentation , Mass Spectrometry/standards , Molecular Sequence Data , Peptides/chemical synthesis , Proteomics/instrumentation , Proteomics/standards , Reference Standards , Reproducibility of Results , Saccharomyces cerevisiae/chemistry , Sensitivity and Specificity , Time Factors
14.
Proteomics Clin Appl ; 6(3-4): 190-200, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22532455

ABSTRACT

PURPOSE: Typically, apolipoproteins are individually measured in blood by immunoassay. In this report, we describe the development of a multiplexed selected reaction monitoring (SRM) based assay for a panel of apolipoproteins and its application to a clinical cohort of samples derived from acute stroke patients. EXPERIMENTAL DESIGN: An SRM assay for a panel of nine apolipoproteins was developed on a triple quadrupole mass spectrometer. Quantitative data for each apolipoprotein were analyzed to determine expression ratio and receiver operating characteristic (ROC) values for ischemic versus hemorrhagic stroke. RESULTS: The optimized SRM assay was used to interrogate a small cohort of well-characterized plasma samples obtained from patients with acute ischemic and hemorrhagic strokes. The ROC analyses demonstrated good classification power for several single apolipoproteins, most notably apoC-III and apoC-I. When a novel multi-marker ROC algorithm was applied, the ischemic versus hemorrhagic groups were best differentiated by a combination of apoC-III and apoA-I with an area under the curve (AUC) value of 0.92. CONCLUSIONS AND CLINICAL RELEVANCE: This proof-of-concept study provides interesting and provocative data for distinguishing ischemic versus hemorrhage within first week of symptom onset. However, the observations are based on one cohort of patient samples and further confirmation will be required.


Subject(s)
Algorithms , Apolipoproteins/blood , Blood Proteins/analysis , Hemorrhagic Disorders/diagnosis , Mass Spectrometry/methods , ROC Curve , Stroke/diagnosis , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , Apolipoproteins/classification , Biomarkers/blood , Case-Control Studies , Cohort Studies , Female , Hemorrhagic Disorders/pathology , Humans , Ischemia/diagnosis , Ischemia/pathology , Limit of Detection , Male , Mass Spectrometry/standards , Middle Aged , Molecular Sequence Data , Stroke/pathology , Young Adult
15.
J Proteome Res ; 10(1): 133-42, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-20499897

ABSTRACT

The accurate diagnosis of Trisomy 21 requires invasive procedures that carry a risk of miscarriage. The current state-of-the-art maternal serum screening tests measure levels of PAPP-A, free bhCG, AFP, and uE3 in various combinations with a maximum sensitivity of 60-75% and a false positive rate of 5%. There is currently an unmet need for noninvasive screening tests with high selectivity that can detect pregnancies at risk, preferably within the first trimester. The aim of this study was to apply proteomics and mass spectrometry techniques for the discovery of new putative biomarkers for Trisomy 21 in first trimester maternal serum coupled with the immediate development of quantitative selective reaction monitoring (SRM) assays. The results of the novel workflow were 2-fold: (1) we identified a list of differentially expressed proteins in Trisomy 21 vs Normal samples, including PAPP-A, and (2) we developed a multiplexed, high-throughput SRM assay for verification of 12 new putative markers identified in the discovery experiments. To narrow down the initial large list of differentially expressed candidates resulting from the discovery experiments, we incorporated receiver operating characteristic (ROC) curve algorithms early in the data analysis process. We believe this approach provides a substantial advantage in sifting through the large and complex data typically obtained from discovery experiments. The workflow efficiently mined information derived from high-resolution LC-MS/MS discovery data for the seamless construction of rapid, targeted assays that were performed on unfractionated serum digests. The SRM assay lower limit of detection (LLOD) for the target peptides in a background of digested serum matrix was approximately 250-500 attomoles on column and the limit of accurate quantitation (LOQ) was approximately 1-5 femtomoles on column. The assay error as determined by coefficient of variation at LOQ and above ranged from 0 to 16%. The workflow developed in this study bridges the gap between proteomic biomarker discovery and translation into a clinical research environment. Specifically, for Trisomy 21, the described multiplexed SRM assay provides a vehicle for high-throughput verification of these, and potentially other, peptide candidates on larger sample cohorts.


Subject(s)
Biomarkers/blood , Down Syndrome/diagnosis , Mass Spectrometry/methods , Pregnancy Trimester, First , Prenatal Diagnosis/methods , Proteomics/methods , Area Under Curve , Blood Proteins/analysis , Blood Proteins/chemistry , Female , Humans , Peptide Fragments/analysis , Peptide Fragments/chemistry , Pregnancy , ROC Curve
16.
Mol Cell Proteomics ; 10(2): M110.002931, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20664071

ABSTRACT

Proteomics is gradually complementing large shotgun qualitative studies with hypothesis-driven quantitative experiments. Targeted analyses performed on triple quadrupole instruments in selected reaction monitoring mode are characterized by a high degree of selectivity and low limit of detection; however, the concurrent analysis of multiple analytes occurs at the expense of sensitivity because of reduced dwell time and/or selectivity due to limitation to a few transitions. A new data acquisition paradigm is presented in which selected reaction monitoring is performed in two ways to simultaneously quantify and confirm the identity of the targeted peptides. A first set of primary transitions is continuously monitored during a predetermined elution time window to precisely quantify each peptide. In addition, a set of six to eight transitions is acquired in a data-dependent event, triggered when all the primary transitions exceed a preset threshold. These additional transitions are used to generate composite tandem mass spectra to formally confirm the identity of the targeted peptides. This technique was applied to analyze the tryptic digest of a yeast lysate to demonstrate the performance of the technique. We showed a limit of detection down to tens of attomoles injected and a throughput exceeding 6000 transitions in one 60-min experiment. The technique was integrated into a linear work flow, including experimental design, data acquisition, and data evaluation, enabling large scale proteomic studies.


Subject(s)
Proteomics/methods , Biomarkers/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Fungal Proteins/chemistry , Mass Spectrometry/methods , Models, Statistical , Peptides/chemistry , Reproducibility of Results , Saccharomyces cerevisiae/metabolism , Software , Systems Biology
17.
J Proteome Res ; 9(5): 2752-61, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20205385

ABSTRACT

The stoichiometry of protein phosphorylation at specific amino acid sites may be used to infer on the significance of the modification, and its biological function in the cell. However, detection and quantification of phosphorylation stoichiometry in tissue remain a significant challenge. Here we describe a strategy for highly sensitive, label-free quantification of protein phosphorylation stoichiometry. Method development included the analysis of synthetic peptides in order to determine constants to relate the mass spectrometry signals of cognate peptide/phosphopeptide pairs, and the detection of the cognate peptides by using high resolution Fourier Transform mass spectrometry (FTMS) and selected reaction monitoring mass spectrometry (SRM). By analyzing extracted ion currents by FTMS, the phosphorylation stoichiometries of two tyrosine residues (tyrosine-194 and tyrosine-397) in the protein tyrosine kinase Lyn were determined in transfected human HEK293T cells and two cultured human multiple myeloma strains. To achieve high sensitivity to measure phosphorylation stoichiometry in tissue, SRM methods were developed and applied for the analysis of phosphorylation stoichiometries of Lyn phospho-sites in multiple myeloma xenograft tumors. Western immuno-blotting was used to verify mass spectrometry findings. The SRM method has potential applications in analyzing clinical samples wherein protein phosphorylation stoichiometries may represent important pharmacodynamic biomarkers.


Subject(s)
Mass Spectrometry/methods , Phosphoproteins/metabolism , Proteins/metabolism , Proteomics/methods , Animals , Cell Line , Fourier Analysis , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Multiple Myeloma/metabolism , Neoplasm Transplantation , Phosphoproteins/analysis , Phosphorylation , Proteins/analysis , Tyrosine/metabolism , src-Family Kinases/analysis , src-Family Kinases/metabolism
18.
Mol Cell Proteomics ; 8(9): 2131-44, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19531499

ABSTRACT

Aberrant expression, activation, and down-regulation of the epidermal growth factor receptor (EGFR) have causal roles in many human cancers, and post-translational modifications including phosphorylation and ubiquitination and protein-protein interactions directly modulate EGFR function. Quantitative mass spectrometric analyses including selected reaction monitoring (also known as multiple reaction monitoring) were applied to the EGFR and associated proteins. In response to epidermal growth factor (EGF) stimulation of cells, phosphorylations at EGFR Ser(991) and Tyr(998) accumulated more slowly than at receptor sites involved in RAS-ERK signaling. Phosphorylation-deficient mutant receptors S991A and Y998F activated ERK in response to EGF but were impaired for receptor endocytosis. Consistent with these results, the mutant receptors retained a network of interactions with known signaling proteins including EGF-stimulated binding to the adaptor GRB2. Compared with wild type EGFR the Y998F variant had diminished EGF-stimulated interaction with the ubiquitin E3 ligase CBL, and the S991A variant had decreased associated ubiquitin. The endocytosis-defective mutant receptors were found to have elevated phosphorylation at positions Ser(1039) and Thr(1041). These residues reside in a serine/threonine-rich region of the receptor previously implicated in p38 mitogen-activated protein kinase-dependent stress/cytokine-induced EGFR internalization and recycling (Zwang, Y., and Yarden, Y. (2006) p38 MAP kinase mediates stress-induced internalization of EGFR: implications for cancer chemotherapy. EMBO J. 25, 4195-4206). EGF-induced phosphorylations at Ser(1039) and Thr(1041) were blocked by treatment of cells with SB-202190, a selective inhibitor of p38. These results suggest that coordinated phosphorylation of EGFR involving sites Tyr(998), Ser(991), Ser(1039), and Thr(1041) governs the trafficking of EGF receptors. This reinforces the notion that EGFR function is manifest through spatially and temporally controlled protein-protein interactions and phosphorylations.


Subject(s)
Endocytosis , ErbB Receptors/metabolism , Phosphoserine/metabolism , Phosphothreonine/metabolism , Blotting, Western , Cell Line , Chromatography, Liquid , Endocytosis/drug effects , Epidermal Growth Factor/pharmacology , ErbB Receptors/chemistry , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , MAP Kinase Signaling System/drug effects , Mass Spectrometry , Mutant Proteins/chemistry , Phosphorylation/drug effects , Structure-Activity Relationship , Time Factors
19.
J Proteome Res ; 8(6): 2733-9, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19326923

ABSTRACT

Selected reaction monitoring (SRM) is a powerful tandem mass spectrometry method that can be used to monitor target peptides within a complex protein digest. The specificity and sensitivity of the approach, as well as its capability to multiplex the measurement of many analytes in parallel, has made it a technology of particular promise for hypothesis driven proteomics. An underappreciated step in the development of an assay to measure many peptides in parallel is the time and effort necessary to establish a usable assay. Here we report the use of shotgun proteomics data to expedite the selection of SRM transitions for target peptides of interest. The use of tandem mass spectrometry data acquired on an LTQ ion trap mass spectrometer can accurately predict which fragment ions will produce the greatest signal in an SRM assay using a triple quadrupole mass spectrometer. Furthermore, we present a scoring routine that can compare the targeted SRM chromatogram data with an MS/MS spectrum acquired by data-dependent acquisition and stored in a library. This scoring routine is invaluable in determining which signal in the chromatogram from a complex mixture best represents the target peptide. These algorithmic developments have been implemented in a software package that is available from the authors upon request.


Subject(s)
Mass Spectrometry/methods , Peptide Fragments/chemistry , Proteomics/methods , Algorithms , Animals , Caenorhabditis elegans Proteins/chemistry , Data Interpretation, Statistical , Databases, Protein , Escherichia coli Proteins/chemistry , Peptide Library , Software
20.
J Phys Chem A ; 112(46): 11590-7, 2008 Nov 20.
Article in English | MEDLINE | ID: mdl-18942817

ABSTRACT

The blackbody infrared radiation induced dissociation of methyl benzoate (C8H8O2(+*)) radical cation was investigated by using a Fourier transfer ion cyclotron resonance mass spectrometer equipped with a resistively heated (wire temperatures of 400-1070 K) wire ion guide. We observed product ion branching ratios that are strongly dependent upon wire temperature. At low temperatures (670-890 K) the major product ion C7H8 (+*) (m/z 92), which is formed by loss of CO2, and at higher temperatures (above 900 K), loss of methoxy radical ((*)OCH3) competes with loss of CO2. The energies of the various reactant ions and transition states for product ion formation were estimated by using density functional theory molecular orbital calculations, and a proposed mechanism for the dissociation chemistry of C8H8O2 (+*) involving a multistep rearrangement reaction is tested using the Master Equation formalism.


Subject(s)
Benzoates/chemistry , Fourier Analysis , Hydrogen/chemistry , Infrared Rays , Kinetics , Quantum Theory , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...