Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014037

ABSTRACT

Usher syndrome type 1F (USH1F), resulting from mutations in the protocadherin-15 (PCDH15) gene, is characterized by congenital lack of hearing and balance, and progressive blindness in the form of retinitis pigmentosa. In this study, we explore a novel approach for USH1F gene therapy, exceeding the single AAV packaging limit by employing a dual adeno-associated virus (AAV) strategy to deliver the full-length PCDH15 coding sequence. We demonstrate the efficacy of this strategy in mouse USH1F models, effectively restoring hearing and balance in these mice. Importantly, our approach also proves successful in expressing PCDH15 in clinically relevant retinal models, including human retinal organoids and non-human primate retina, showing efficient targeting of photoreceptors and proper protein expression in the calyceal processes. This research represents a major step toward advancing gene therapy for USH1F and the multiple challenges of hearing, balance, and vision impairment.

2.
Cancer Immunol Res ; 11(12): 1589-1597, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37871333

ABSTRACT

Transgenic T-cell receptor (TCR) T cell-based adoptive cell therapies for solid tumors are associated with dramatic initial response rates, but there remain many instances of treatment failure and disease relapse. The association of infusion product cytokine profiles with clinical response has not been explored in the context of TCR T-cell therapy products. Single-cell antigen-dependent secretomic and proteomic analysis of preinfusion clinical TCR T-cell therapy products revealed that TNFα cytokine functionality of CD8+ T cells and phospho-STAT3 signaling in these cells were both associated with superior clinical responsiveness to therapy. By contrast, CD4+ T-helper 2 cell cytokine profiles were associated with inferior clinical responses. In parallel, preinfusion levels of IL15, Flt3-L, and CX3CL1 were all found to be associated with clinical response to therapy. These results have implications for the development of therapeutic biomarkers and identify potential targets for enrichment in the design of transgenic TCR T-cell therapies for solid tumors.


Subject(s)
Neoplasms , Tumor Necrosis Factor-alpha , Animals , Humans , Mice , Proteomics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Cytokines , Animals, Genetically Modified , Cell- and Tissue-Based Therapy , Mice, Transgenic , STAT3 Transcription Factor
3.
Mol Ther ; 31(8): 2439-2453, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37312453

ABSTRACT

Usher syndrome type 1F (USH1F), characterized by congenital lack of hearing and balance and progressive loss of vision, is caused by mutations in the PCDH15 gene. In the Ashkenazi population, a recessive truncation mutation accounts for a large proportion of USH1F cases. The truncation is caused by a single C→T mutation, which converts an arginine codon to a stop (R245X). To test the potential for base editors to revert this mutation, we developed a humanized Pcdh15R245X mouse model for USH1F. Mice homozygous for the R245X mutation were deaf and exhibited profound balance deficits, while heterozygous mice were unaffected. Here we show that an adenine base editor (ABE) is capable of reversing the R245X mutation to restore the PCDH15 sequence and function. We packaged a split-intein ABE into dual adeno-associated virus (AAV) vectors and delivered them into cochleas of neonatal USH1F mice. Hearing was not restored in a Pcdh15 constitutive null mouse despite base editing, perhaps because of early disorganization of cochlear hair cells. However, injection of vectors encoding the split ABE into a late-deletion conditional Pcdh15 knockout rescued hearing. This study demonstrates the ability of an ABE to correct the PCDH15 R245X mutation in the cochlea and restore hearing.


Subject(s)
Usher Syndromes , Mice , Animals , Usher Syndromes/genetics , Usher Syndromes/therapy , Gene Editing , Mutation , Hearing/genetics , Cadherins/genetics
4.
J Immunother Cancer ; 11(5)2023 05.
Article in English | MEDLINE | ID: mdl-37156551

ABSTRACT

BACKGROUND: The tumor antigen NY-ESO-1 has been shown to be an effective target for transgenic adoptive cell therapy (ACT) for the treatment of sarcoma and melanoma. However, despite frequent early clinical responses, many patients ultimately develop progressive disease. Understanding the mechanisms underlying treatment resistance is crucial to improve future ACT protocols. Here, we describe a novel mechanism of treatment resistance in sarcoma involving loss of expression of NY-ESO-1 in response to transgenic ACT with dendritic cell (DC) vaccination and programmed cell death protein-1 (PD-1) blockade. METHODS: A HLA-A*02:01-positive patient with an NY-ESO-1-positive undifferentiated pleomorphic sarcoma was treated with autologous NY-ESO-1-specific T-cell receptor (TCR) transgenic lymphocytes, NY-ESO-1 peptide-pulsed DC vaccination, and nivolumab-mediated PD-1 blockade. RESULTS: Peripheral blood reconstitution with NY-ESO-1-specific T cells peaked within 2 weeks of ACT, indicating rapid in vivo expansion. There was initial tumor regression, and immunophenotyping of the peripheral transgenic T cells showed a predominantly effector memory phenotype over time. Tracking of transgenic T cells to the tumor sites was demonstrated in on-treatment biopsy via both TCR sequencing-based and RNA sequencing-based immune reconstitution, and nivolumab binding to PD-1 on transgenic T cells was confirmed at the tumor site. At the time of disease progression, the promoter region of NY-ESO-1 was found to be extensively methylated, and tumor NY-ESO-1 expression was completely lost as measured by RNA sequencing and immunohistochemistry. CONCLUSIONS: ACT of NY-ESO-1 transgenic T cells given with DC vaccination and anti-PD-1 therapy resulted in transient antitumor activity. NY-ESO-1 expression was lost in the post-treatment sample in the setting of extensive methylation of the NY-ESO-1 promoter region. BIOLOGICAL/CLINICAL INSIGHT: Antigen loss represents a novel mechanism of immune escape in sarcoma and a new point of improvement in cellular therapy approaches. TRIAL REGISTRATION NUMBER: NCT02775292.


Subject(s)
Melanoma , Sarcoma , Humans , Nivolumab , Immunotherapy/methods , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
5.
Nat Commun ; 14(1): 2400, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37100771

ABSTRACT

Usher syndrome type 1 F (USH1F), caused by mutations in the protocadherin-15 gene (PCDH15), is characterized by congenital deafness, lack of balance, and progressive blindness. In hair cells, the receptor cells of the inner ear, PCDH15 is a component of tip links, fine filaments which pull open mechanosensory transduction channels. A simple gene addition therapy for USH1F is challenging because the PCDH15 coding sequence is too large for adeno-associated virus (AAV) vectors. We use rational, structure-based design to engineer mini-PCDH15s in which 3-5 of the 11 extracellular cadherin repeats are deleted, but which still bind a partner protein. Some mini-PCDH15s can fit in an AAV. An AAV encoding one of these, injected into the inner ears of mouse models of USH1F, produces a mini-PCDH15 which properly forms tip links, prevents the degeneration of hair cell bundles, and rescues hearing. Mini-PCDH15s may be a useful therapy for the deafness of USH1F.


Subject(s)
Ear, Inner , Usher Syndromes , Animals , Mice , Cadherins/metabolism , Ear, Inner/metabolism , Hair Cells, Auditory/metabolism , Hearing/genetics , Usher Syndromes/genetics , Usher Syndromes/therapy , Cadherin Related Proteins/metabolism
6.
Cell Rep Med ; 4(3): 100959, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36863336

ABSTRACT

The transplanting islets to the liver approach suffers from an immediate posttransplant loss of islets of more than 50%, progressive graft dysfunction over time, and precludes recovery of grafts should there be serious complications such as the development of teratomas with grafts that are stem cell-derived islets (SC-islets). The omentum features an attractive extrahepatic alternative site for clinical islet transplantation. We explore an approach in which allogeneic islets are transplanted onto the omentum, which is bioengineered with a plasma-thrombin biodegradable matrix in three diabetic non-human primates (NHPs). Within 1 week posttransplant, each transplanted NHP achieves normoglycemia and insulin independence and remains stable until termination of the experiment. Success was achieved in each case with islets recovered from a single NHP donor. Histology demonstrates robust revascularization and reinnervation of the graft. This preclinical study can inform the development of strategies for ß cell replacement including the use of SC-islets or other types of novel cells in clinical settings.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Omentum/surgery , Islets of Langerhans/surgery , Islets of Langerhans/metabolism , Transplantation, Homologous , Islets of Langerhans Transplantation/adverse effects , Islets of Langerhans Transplantation/pathology , Primates , Allografts
7.
Cancer Immunol Res ; 10(12): 1433-1440, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36259217

ABSTRACT

A major complication of chimeric antigen receptor (CAR) T-cell therapy is immune effector cell-associated neurotoxicity syndrome (ICANS), which presents as aphasia, confusion, weakness, somnolence, seizures, and coma. This is similar to the neurologic manifestations of hypophosphatemia, which can result from sudden increases in metabolic demand for phosphorylated intermediates (e.g., refeeding syndrome and sepsis). Given these similarities, we investigated whether CAR T-cell effector metabolic activity is associated with increased extracellular phosphate consumption and a possible association between hypophosphatemia and ICANS. In vitro 4-1BB and CD28 CD19-targeted CAR T-cell effector activity was found to be associated with increased consumption of media phosphorus, which was temporally associated with increased single-cell effector secretomic activity and increased phosphorus-dependent metabolic demand of the CAR T cells. A clinical cohort of 77 patients treated with CD19-targeted CAR T-cell therapy demonstrated a significant anticorrelation between serum phosphorus and ICANS incidence and severity, with earlier onset of hypophosphatemia after CAR T-cell infusion more likely to result in neurotoxicity. These results imply phosphorous level monitoring could alert to the development of ICANS in clinical scenarios. See related Spotlight by Tobin et al., p. 1422.


Subject(s)
Hypophosphatemia , Neurotoxicity Syndromes , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell , Antigens, CD19 , Neurotoxicity Syndromes/etiology , Hypophosphatemia/chemically induced , Phosphorus
8.
Sci Adv ; 8(19): eabm9881, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35559682

ABSTRACT

Islet transplantation to treat insulin-dependent diabetes is greatly limited by the need for maintenance immunosuppression. We report a strategy through which cotransplantation of allogeneic islets and streptavidin (SA)-FasL-presenting microgels to the omentum under transient rapamycin monotherapy resulted in robust glycemic control, sustained C-peptide levels, and graft survival in diabetic nonhuman primates for >6 months. Surgical extraction of the graft resulted in prompt hyperglycemia. In contrast, animals receiving microgels without SA-FasL under the same rapamycin regimen rejected islet grafts acutely. Graft survival was associated with increased number of FoxP3+ cells in the graft site with no significant changes in T cell systemic frequencies or responses to donor and third-party antigens, indicating localized tolerance. Recipients of SA-FasL microgels exhibited normal liver and kidney metabolic function, demonstrating safety. This localized immunomodulatory strategy succeeded with unmodified islets and does not require long-term immunosuppression, showing translational potential in ß cell replacement for treating type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Microgels , Allografts/metabolism , Animals , Diabetes Mellitus, Type 1/therapy , Islets of Langerhans Transplantation/methods , Primates , Sirolimus , Streptavidin
9.
Am J Transplant ; 22(3): 966-972, 2022 03.
Article in English | MEDLINE | ID: mdl-34704352

ABSTRACT

Clinical islet transplantation has relied almost exclusively on intraportal administration of pancreatic islets, as it has been the only consistent approach to achieve robust graft function in human recipients. However, this approach suffers from significant loss of islet mass from a potent immediate blood-mediated inflammatory response (IBMIR) and a hypoxic environment. To avoid these negative aspects of the portal site, we explored an alternative approach in which allogeneic islets were transplanted into the intrapleural space of a non-human primate (NHP), treated with an immunosuppression regimen previously reported to secure routine survival and tolerance to allogeneic islets in NHP. Robust glycemic control and graft survival were achieved for the planned study period of >90 days. Our observations suggest the intrapleural space provides an attractive locale for islet transplantation due to its higher oxygen tension, ability to accommodate large transplant tissue volumes, and a lack of IBMIR-mediated islet damage. Our preliminary results reveal the promise of the intrapleural space as an alternative site for clinical islet transplantation in the treatment of type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Hematopoietic Stem Cell Transplantation , Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Diabetes Mellitus, Type 1/surgery , Glycemic Control , Graft Survival , Islets of Langerhans Transplantation/methods , Primates
10.
Int J Mol Sci ; 22(16)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34445759

ABSTRACT

The dogma of engineering oncolytic viral vectors has shifted from emphasizing the viral lysis of individual cancer cells to the recruitment and coordination of the adaptive immune system to clear the tumor. To accomplish this, researchers have been adding several classes of transgenes to their preferred viral platforms. The most prevalent of these include antibodies and targeting moieties, interleukins and cytokines, and genes which rely on small molecule co-administration for tumor killing. Most current vectors rely exclusively on one of these types of transgenes to elicit the desired immune response to clear tumors, but are not mutually exclusive, with several larger OVs armed with several of these factors. The common theme of emerging armed vectors is to simply initiate or enhance infiltration of effector CD8+ T cells to clear the tumor locally at OV infection sites, and systemically throughout the body where the OV has not infected tumor cells. The precision of oncolytic vectors to target a cell type or tissue remains its key advantage over small-molecule drugs. Unlike chemo- and other drug therapies, viral vectors can be made to specifically infect and grow within tumor cells. This ensures localized expression of the therapeutic transgene to the diseased tissue, thereby limiting systemic toxicity. This review will examine the immunomodulating transgenes of current OVs, describe their general effect on the immune system, and provide the rationale for each vector's use in clearing its targeted tumor.


Subject(s)
Genetic Vectors , Immunomodulation , Neoplasms/therapy , Oncolytic Virotherapy , Animals , Antibodies/administration & dosage , Cytokines/metabolism , Humans , Transgenes
11.
Mol Ther Methods Clin Dev ; 21: 382-398, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-33869656

ABSTRACT

Gene therapy strategies using adeno-associated virus (AAV) vectors to treat hereditary deafnesses have shown remarkable efficacy in some mouse models of hearing loss. Even so, there are few AAV capsids that transduce both inner and outer hair cells-the cells that express most deafness genes-and fewer still shown to transduce hair cells efficiently in primates. AAV capsids with robust transduction of inner and outer hair cells in primate cochlea will be needed for most clinical trials. Here, we test a capsid that we previously isolated from a random capsid library, AAV-S, for transduction in mouse and non-human primate inner ear. In both mice and cynomolgus macaques, AAV-S mediates highly efficient reporter gene expression in a variety of cochlear cells, including inner and outer hair cells, fibrocytes, and supporting cells. In a mouse model of Usher syndrome type 3A, AAV-S encoding CLRN1 robustly and durably rescues hearing. Overall, our data indicate that AAV-S is a promising candidate for therapeutic gene delivery to the human inner ear.

12.
Trends Pharmacol Sci ; 42(6): 461-474, 2021 06.
Article in English | MEDLINE | ID: mdl-33863599

ABSTRACT

As gene therapy enters mainstream medicine, it is more important than ever to have a grasp of exactly how to leverage it for maximum benefit. The development of new targeting strategies and tools makes treating patients with genetic diseases possible. Many Mendelian disorders are amenable to gene replacement or correction. These often affect post-mitotic tissues, meaning that a single stably expressing therapy can be applied. Recent years have seen the development of a large number of novel viral vectors for delivering specific therapies. These new vectors - predominately recombinant adeno-associated virus (AAV) variants - target nervous tissues with differing efficiencies. This review gives an overview of current gene therapies in the brain, ear, and eye, and describes the optimal approaches, depending on cell type and transgene. Overall, this work aims to serve as a primer for gene therapy in the central nervous and sensory systems.


Subject(s)
Dependovirus , Nerve Tissue , Dependovirus/genetics , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors , Humans , Transgenes
13.
Methods Enzymol ; 635: 167-184, 2020.
Article in English | MEDLINE | ID: mdl-32122544

ABSTRACT

Herpes simplex virus type 1 (HSV-1) is a large DNA virus that has been popular for oncolytic virus development in pre-clinical research and clinical trials. An oncolytic HSV-1 encoding granulocyte-macrophage colony stimulating factor (GM-CSF), designated talimogene laherparepvec (T-VEC) was approved for the treatment of patients with advanced melanoma in 2015. There are numerous advantages of HSV-1 for oncolytic development, including the ease of recombinant engineering, presence of non-essential genes allowing attenuation of pathogenicity and space for foreign transgene expression. In addition, most recombinants retain sensitivity to acyclovir providing an additional safety feature. In this chapter, we will focus on the key methods for the development of oncolytic HSV-1 vectors and some of the commonly utilized laboratory protocols used to characterize and assess the structure and oncolytic activity of recombinant HSV-1 viruses.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Melanoma , Oncolytic Virotherapy , CRISPR-Cas Systems/genetics , Genetic Vectors/genetics , Herpes Simplex/therapy , Herpesvirus 1, Human/genetics , Humans , Melanoma/genetics , Melanoma/therapy
14.
Mol Ther Oncolytics ; 12: 259-262, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-33072862

ABSTRACT

The 2018 annual Cambridge Healthtech Institute's International Immuno-Oncology Summit in Boston, MA convened late August, and academic and industry researchers were allowed to debate and discuss oncolytic virology during the virus immunotherapy portion of the conference. The breakthrough agent, TVEC/IMLYGIC, as well as most other oncolytic viruses (OVs) in clinical trials, are demonstrating an immense synergy with T cell checkpoint inhibitors. To this extent, the marriage of T cell checkpoint inhibitors and OV is now vastly accepted, indicating the next phase in OVs is the recruitment of the immune system, and tailoring the immune response toward tumor clearance is a far better strategy than directly lysing the tumor outright with virus. The next field-shaping question for OVs is how to convert a patient's immune response against their tumor. The talks this year focused on whether OVs can cause the emergence of a strong anti-tumor immunity intrinsically or whether vectors, which educate the immune system to detect tumor antigens, were more efficacious. Speakers presented novel transgenes to arm OVs and systems biology approaches to discover the best viral backbones to engineer into vectors. Here we summarize the meeting's keynote talks, thematic principles running through the summit, and current developments in the OV field.

15.
J Virol ; 92(15)2018 08 01.
Article in English | MEDLINE | ID: mdl-29793956

ABSTRACT

Oncolytic viruses, including herpes simplex viruses (HSVs), are a new class of cancer therapeutic engineered to infect and kill cancer cells while sparing normal tissue. To ensure that oncolytic HSV (oHSV) is safe in the brain, all oHSVs in clinical trial for glioma lack the γ34.5 genes responsible for neurovirulence. However, loss of γ34.5 attenuates growth in cancer cells. Glioblastoma (GBM) is a lethal brain tumor that is heterogeneous and contains a subpopulation of cancer stem cells, termed GBM stem-like cells (GSCs), that likely promote tumor progression and recurrence. GSCs and matched serum-cultured GBM cells (ScGCs), representative of bulk or differentiated tumor cells, were isolated from the same patient tumor specimens. ScGCs are permissive to replication and cell killing by oHSV with deletion of the γ34.5 genes (γ34.5- oHSV), while patient-matched GSCs were not, implying an underlying biological difference between stem and bulk cancer cells. GSCs specifically restrict the synthesis of HSV-1 true late (TL) proteins, without affecting viral DNA replication or transcription of TL genes. A global shutoff of cellular protein synthesis also occurs late after γ34.5- oHSV infection of GSCs but does not affect the synthesis of early and leaky late viral proteins. Levels of phosphorylated eIF2α and eIF4E do not correlate with cell permissivity. Expression of Us11 in GSCs rescues replication of γ34.5- oHSV. The difference in degrees of permissivity between GSCs and ScGCs to γ34.5- oHSV illustrates a selective translational regulatory pathway in GSCs that may be operative in other stem-like cells and has implications for creating oHSVs.IMPORTANCE Herpes simplex virus (HSV) can be genetically engineered to endow cancer-selective replication and oncolytic activity. γ34.5, a key neurovirulence gene, has been deleted in all oncolytic HSVs in clinical trial for glioma. Glioblastoma stem-like cells (GSCs) are a subpopulation of tumor cells thought to drive tumor heterogeneity and therapeutic resistance. GSCs are nonpermissive for γ34.5- HSV, while non-stem-like cancer cells from the same patient tumors are permissive. GSCs restrict true late protein synthesis, despite normal viral DNA replication and transcription of all kinetic classes. This is specific for true late translation as early and leaky late transcripts are translated late in infection, notwithstanding shutoff of cellular protein synthesis. Expression of Us11 in GSCs rescues the replication of γ34.5- HSV. We have identified a cell type-specific innate response to HSV-1 that limits oncolytic activity in glioblastoma.


Subject(s)
Brain Neoplasms/virology , Gene Deletion , Glioblastoma/virology , Neoplastic Stem Cells/virology , Simplexvirus/physiology , Viral Proteins/genetics , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/therapy , Cell Culture Techniques/methods , Cell Line, Tumor , Chlorocebus aethiops , Glioblastoma/metabolism , Glioblastoma/therapy , Herpes Simplex/genetics , Neoplastic Stem Cells/metabolism , Oncolytic Viruses/genetics , Oncolytic Viruses/physiology , RNA-Binding Proteins/metabolism , Simplexvirus/genetics , Vero Cells , Viral Proteins/metabolism , Virus Replication
16.
Clin Cancer Res ; 24(14): 3409-3422, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29599413

ABSTRACT

Purpose: Glioblastoma (GBM), a fatal brain cancer, contains a subpopulation of GBM stem-like cells (GSCs) that contribute to resistance to current therapy. Angiogenesis also plays a key role in GBM progression. Therefore, we developed a strategy to target the complex GBM microenvironment, including GSCs and tumor vasculature.Experimental Design: We evaluated the cytotoxic effects of VEFGR tyrosine kinase inhibitor (TKI) axitinib in vitro and then tested antitumor efficacy of axitinib in combination with oncolytic herpes simplex virus (oHSV) expressing antiangiogenic cytokine murine IL12 (G47Δ-mIL12) in two orthotopic GSC-derived GBM models: patient-derived recurrent MGG123 GSCs, forming vascular xenografts in immunodeficient mice; and mouse 005 GSCs, forming syngeneic tumors in immunocompetent mice.Results: GSCs form endothelial-like tubes and were sensitive to axitinib. G47Δ-mIL12 significantly improved survival, as did axitinib, while dual combinations further extended survival significantly compared with single therapies alone in both models. In MGG123 tumors, axitinib was effective only at high doses (50 mg/kg), alone and in combination with G47Δ-mIL12, and this was associated with greatly decreased vascularity, increased macrophage infiltration, extensive tumor necrosis, and PDGFR/ERK pathway inhibition. In the mouse 005 model, antiglioma activity, after single and combination therapy, was only observed in immunocompetent mice and not the T-cell-deficient athymic mice. Interestingly, immune checkpoint inhibition did not improve efficacy.Conclusions: Systemic TKI (axitinib) beneficially combines with G47Δ-mIL12 to enhance antitumor efficacy in both immunodeficient and immunocompetent orthotopic GBM models. Our results support further investigation of TKIs in combination with oHSV for GBM treatment. Clin Cancer Res; 24(14); 3409-22. ©2018 AACR.


Subject(s)
Glioblastoma/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Oncolytic Virotherapy , Protein Kinase Inhibitors/pharmacology , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Animals , Antineoplastic Agents, Immunological/pharmacology , Axitinib/pharmacology , Cell Line, Tumor , Combined Modality Therapy , Cytotoxicity, Immunologic , Disease Models, Animal , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Glioblastoma/mortality , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Immunohistochemistry , Interleukin-12/genetics , Interleukin-12/metabolism , Mice , Neoplastic Stem Cells/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Signal Transduction , Tumor Microenvironment , Xenograft Model Antitumor Assays
17.
J Natl Cancer Inst ; 109(3): 1-13, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28376211

ABSTRACT

Background: Clinical success of poly(ADP-ribose) polymerase inhibitors (PARP i ) has been limited to repair-deficient cancers and by resistance. Oncolytic herpes simplex viruses (oHSVs) selectively kill cancer cells, irrespective of mutation, and manipulate DNA damage responses (DDR). Here, we explore potential synthetic lethal-like interactions between oHSV and PARP i . Methods: The efficacy of combining PARP i , oHSV MG18L, and G47Δ in killing patient-derived glioblastoma stem cells (GSCs) was assessed using cell viability assays and Chou-Talalay synergy analysis. Effects on DDR pathways, apoptosis, and cell cycle after manipulation with pharmacological inhibitors and lentivirus-mediated knockdown or overexpression were examined by immunoblotting and FACS. In vivo efficacy was evaluated in two GSC-derived orthotopic xenograft models (n = 7-8 per group). All statistical tests were two-sided. Results: GSCs are differentially sensitive to PARP i despite uniform inhibition of PARP activity. oHSV sensitized GSCs to PARP i , irrespective of their PARP i sensitivity through selective proteasomal degradation of key DDR proteins; Rad51, mediating the combination effects; and Chk1. Rad51 degradation required HSV DNA replication. This synthetic lethal-like interaction increased DNA damage, apoptosis, and cell death in vitro and in vivo. Combined treatment of mice bearing PARP i -sensitive or -resistant GSC-derived brain tumors greatly extended median survival compared to either agent alone (vs olaparib: P ≤.001; vs MG18L: P = .005; median survival for sensitive of 83 [95% CI = 77 to 86], 94 [95% CI = 75 to 107], 102 [95% CI = 85 to 110], and 131 [95% CI = 108 to 170] days and for resistant of 54 [95% CI = 52 to 58], 56 [95% CI = 52 to 61], 62 [95% CI = 56 to 72], and 75 [95% CI = 64 to 90] days for mock, PARPi, oHSV, and combination, respectively). Conclusions: The unique oHSV property to target multiple components of DDR generates cancer selective sensitivity to PARP i . This combination of oHSV with PARP i is a new anticancer strategy that overcomes the clinical barriers of PARP i resistance and DNA repair proficiency and is applicable not only to glioblastoma, an invariably lethal tumor, but also to other tumor types.


Subject(s)
Brain Neoplasms/therapy , DNA, Viral/biosynthesis , Glioblastoma/therapy , Oncolytic Virotherapy , Phthalazines/therapeutic use , Piperazines/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Rad51 Recombinase/metabolism , Simplexvirus/physiology , Animals , Apoptosis , Brain Neoplasms/enzymology , Cell Cycle , Cell Survival/drug effects , Checkpoint Kinase 1/metabolism , Combined Modality Therapy , DNA Repair , DNA Replication , Drug Resistance, Neoplasm , Female , Glioblastoma/enzymology , Humans , Mice , Neoplasm Transplantation , Neoplastic Stem Cells , Oncolytic Viruses/physiology , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Signal Transduction , Tumor Cells, Cultured , Tumor Stem Cell Assay
18.
Article in English | MEDLINE | ID: mdl-26462293

ABSTRACT

Oncolytic herpes simplex virus (oHSV) was one of the first genetically-engineered oncolytic viruses. Because herpes simplex virus (HSV) is a natural human pathogen that can cause serious disease, it is incumbent that it be genetically-engineered or significantly attenuated for safety. Here we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are non-essential for growth in tissue culture cells but are important for growth in post-mitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be 'armed' with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate anti-tumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity.

19.
J Virol ; 87(19): 10598-611, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23885070

ABSTRACT

Reverse genetic analyses of negative-strand RNA (NSR) viruses have provided enormous advances in our understanding of animal viruses over the past 20 years, but technical difficulties have hampered application to plant NSR viruses. To develop a reverse genetic approach for analysis of plant NSR viruses, we have engineered Sonchus yellow net nucleorhabdovirus (SYNV) minireplicon (MR) reporter cassettes for Agrobacterium tumefaciens expression in Nicotiana benthamiana leaves. Fluorescent reporter genes substituted for the SYNV N and P protein open reading frames (ORFs) exhibited intense single-cell foci throughout regions of infiltrated leaves expressing the SYNV MR derivatives and the SYNV nucleocapsid (N), phosphoprotein (P), and polymerase (L) proteins. Genomic RNA and mRNA transcription was detected for reporter genes substituted for both the SYNV N and P ORFs. These activities required expression of the N, P, and L core proteins in trans and were enhanced by codelivery of viral suppressor proteins that interfere with host RNA silencing. As is the case with other members of the Mononegavirales, we detected polar expression of fluorescent proteins and chloramphenicol acetyltransferase substitutions for the N and P protein ORFs. We also demonstrated the utility of the SYNV MR system for functional analysis of SYNV core proteins in trans and the cis-acting leader and trailer sequence requirements for transcription and replication. This work provides a platform for construction of more complex SYNV reverse genetic derivatives and presents a general strategy for reverse genetic applications with other plant NSR viruses.


Subject(s)
Nicotiana/virology , Plant Viruses/genetics , RNA Viruses/genetics , Replicon , Rhabdoviridae Infections/virology , Rhabdoviridae/physiology , Viral Proteins/metabolism , Plant Leaves/metabolism , Plant Leaves/virology , Plant Viruses/metabolism , Plasmids , RNA Viruses/metabolism , RNA, Plant/genetics , Rhabdoviridae Infections/genetics , Sonchus , Nicotiana/genetics , Nicotiana/metabolism , Transcription, Genetic , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...