Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(1): 96-108, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36548159

ABSTRACT

We performed more than a year of mobile, 1 Hz measurements of lung-deposited surface area (LDSA, the surface area of 20-400 nm diameter particles, deposited in alveolar regions of lungs) and optically assessed fine particulate matter (PM2.5), black carbon (BC), and nitrogen dioxide (NO2) in central London. We spatially correlated these pollutants to two urban emission sources: major roadways and restaurants. We show that optical PM2.5 is an ineffective indicator of tailpipe emissions on major roadways, where we do observe statistically higher LDSA, BC, and NO2. Additionally, we find pollutant hot spots in commercial neighborhoods with more restaurants. A low LDSA (15 µm2 cm-3) occurs in areas with fewer major roadways and restaurants, while the highest LDSA (25 µm2 cm-3) occurs in areas with more of both sources. By isolating areas that are higher in one source than the other, we demonstrate the comparable impacts of traffic and restaurants on LDSA. Ratios of hyperlocal enhancements (ΔLDSA:ΔBC and ΔLDSA:ΔNO2) are higher in commercial neighborhoods than on major roadways, further demonstrating the influence of restaurant emissions on LDSA. We demonstrate the added value of using particle surface in identifying hyperlocal patterns of health-relevant PM components, especially in areas with strong vehicular emissions where the high LDSA does not translate to high PM2.5.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Particulate Matter/analysis , Air Pollutants/analysis , Nitrogen Dioxide/analysis , London , Vehicle Emissions/analysis , Lung , Environmental Monitoring , Air Pollution/analysis
2.
J Environ Manage ; 246: 868-880, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31252249

ABSTRACT

BACKGROUND: The increase in frequency and intensity of urban flooding is a global challenge. Flooding directly impacts residents of industrialized cities with aging combined sewer systems, as well as cities with less centralized infrastructure to manage stormwater, fecal sludge, and wastewater. Green infrastructure is growing in popularity as a sustainable strategy to mimic nature-based flood management. Although its technical performance has been extensively studied, little is known about the effects of green stormwater infrastructure on human health and social well-being. METHODS: We conducted a multidisciplinary systematic review of peer-reviewed and gray literature on the effects of green infrastructure for stormwater and flood management on individuals', households', and communities' a) physical health; b) mental health; c) economic well-being; and d) flood resilience and social acceptance of green infrastructure. We systematically searched databases such as PubMed, Web of Science, and Scopus; the first 300 results in Google Scholar; and websites of key organizations including the United States Environmental Protection Agency. Study quality and strength of evidence was assessed for included studies, and descriptive data were extracted for a narrative summary. RESULTS: Out of 21,213 initial results, only 18 studies reported health or social well-being outcomes. Seven of these studies used primary data, and none allowed for causal inference. No studies connected green infrastructure for stormwater and flood management to mental or physical health outcomes. Thirteen studies were identified on economic outcomes, largely reporting a positive association between green infrastructure and property values. Five studies assessed changes in perceptions about green infrastructure, but with mixed results. Nearly half of all included studies were from Portland, Oregon. CONCLUSIONS: This global systematic review highlights the minimal evidence on human health and social well-being relating to green infrastructure for stormwater and flood management. To enable scale-up of this type of infrastructure to reduce flooding and improve ecological and human well-being, widespread acceptance of green infrastructure will be essential. Policymakers and planners need evidence on the full range of benefits from different contexts to enable financing and implementation of instfrastructure options, especially in highly urbanized, flood-prone settings around the world. Therefore, experts in social science, public health, and program evaluation must be integrated into interdisciplinary green infrastructure research to better relate infrastructure design to tangible human outcomes.


Subject(s)
Environmental Health , Floods , Rain , Cities , Humans , Oregon , Organizations , Social Conditions , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...