Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Physiol Rep ; 12(7): e15956, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561249

ABSTRACT

Mutations in PKD1 and PKD2 cause autosomal dominant polycystic kidney disease (ADPKD), which is characterized by the formation of fluid-filled cysts in the kidney. In a subset of ADPKD patients, reduced blood calcium (Ca2+) and magnesium (Mg2+) concentrations are observed. As cystic fluid contains increased ATP concentrations and purinergic signaling reduces electrolyte reabsorption, we hypothesized that inhibiting ATP release could normalize blood Ca2+ and Mg2+ levels in ADPKD. Inducible kidney-specific Pkd1 knockout mice (iKsp-Pkd1-/-) exhibit hypocalcemia and hypomagnesemia in a precystic stage and show increased expression of the ATP-release channel pannexin-1. Therefore, we administered the pannexin-1 inhibitor brilliant blue-FCF (BB-FCF) every other day from Day 3 to 28 post-induction of Pkd1 gene inactivation. On Day 29, both serum Ca2+ and Mg2+ concentrations were reduced in iKsp-Pkd1-/- mice, while urinary Ca2+ and Mg2+ excretion was similar between the genotypes. However, serum and urinary levels of Ca2+ and Mg2+ were unaltered by BB-FCF treatment, regardless of genotype. BB-FCF did significantly decrease gene expression of the ion channels Trpm6 and Trpv5 in both control and iKsp-Pkd1-/- mice. Finally, no renoprotective effects of BB-FCF treatment were observed in iKsp-Pkd1-/- mice. Thus, administration of BB-FCF failed to normalize serum Ca2+ and Mg2+ levels.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Animals , Humans , Mice , Adenosine Triphosphate/metabolism , Kidney/metabolism , Mice, Knockout , Mutation , Polycystic Kidney, Autosomal Dominant/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , TRPP Cation Channels/pharmacology , Water-Electrolyte Balance
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166987, 2024 02.
Article in English | MEDLINE | ID: mdl-38070582

ABSTRACT

Initial cysts that are formed upon Pkd1 loss in mice impose persistent stress on surrounding tissue and trigger a cystic snowball effect, in which local aberrant PKD-related signaling increases the likelihood of new cyst formation, ultimately leading to accelerated disease progression. Although many pathways have been associated with PKD progression, the knowledge of early changes near initial cysts is limited. To perform an unbiased analysis of transcriptomic alterations in the cyst microenvironment, microdomains were collected from kidney sections of iKsp-Pkd1del mice with scattered Pkd1-deletion using Laser Capture Microdissection. These microdomains were defined as F4/80-low cystic, representing early alterations in the cyst microenvironment, F4/80-high cystic, with more advanced alterations, or non-cystic. RNA sequencing and differential gene expression analysis revealed 953 and 8088 dysregulated genes in the F4/80-low and F4/80-high cyst microenvironment, respectively, when compared to non-cystic microdomains. In the early cyst microenvironment, several injury-repair, growth, and tissue remodeling-related pathways were activated, accompanied by mild metabolic changes. In the more advanced F4/80-high microdomains, these pathways were potentiated and the metabolism was highly dysregulated. Upstream regulator analysis revealed a series of paracrine factors with increased activity in the early cyst microenvironment, including TNFSF12 and OSM. In line with the upstream regulator analysis, TWEAK and Oncostatin-M promoted cell proliferation and inflammatory gene expression in renal epithelial cells and fibroblasts in vitro. Collectively, our data provide an overview of molecular alterations that specifically occur in the cyst microenvironment and identify paracrine factors that may mediate early and advanced alterations in the cyst microenvironment.


Subject(s)
Cysts , Polycystic Kidney Diseases , Mice , Animals , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/metabolism , Kidney/metabolism , Gene Expression Profiling , Cysts/genetics , Tumor Microenvironment
3.
Nat Rev Nephrol ; 20(2): 83-100, 2024 02.
Article in English | MEDLINE | ID: mdl-37872350

ABSTRACT

Primary cilia act as cell surface antennae, coordinating cellular responses to sensory inputs and signalling molecules that regulate developmental and homeostatic pathways. Cilia are therefore critical to physiological processes, and defects in ciliary components are associated with a large group of inherited pleiotropic disorders - known collectively as ciliopathies - that have a broad spectrum of phenotypes and affect many or most tissues, including the kidney. A central feature of the cilium is its compartmentalized structure, which imparts its unique molecular composition and signalling environment despite its membrane and cytosol being contiguous with those of the cell. Such compartmentalization is achieved via active transport pathways that bring protein cargoes to and from the cilium, as well as gating pathways at the ciliary base that establish diffusion barriers to protein exchange into and out of the organelle. Many ciliopathy-linked proteins, including those involved in kidney development and homeostasis, are components of the compartmentalizing machinery. New insights into the major compartmentalizing pathways at the cilium, namely, ciliary gating, intraflagellar transport, lipidated protein flagellar transport and ciliary extracellular vesicle release pathways, have improved our understanding of the mechanisms that underpin ciliary disease and associated renal disorders.


Subject(s)
Ciliopathies , Humans , Ciliopathies/metabolism , Biological Transport , Protein Transport , Cilia/metabolism , Cell Membrane/metabolism
4.
iScience ; 26(11): 108278, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026227

ABSTRACT

Metabolic reprogramming is a driver of autosomal dominant polycystic kidney disease (ADPKD) progression and a potential therapeutic intervention route. We showed before that the AMP-associated protein kinase (AMPK) activator salsalate attenuates cystic disease progression. Here, we aim to study the early, direct effects of short salsalate treatment in adult-onset conditional Pkd1 deletion mice. Cystic mice were treated with salsalate for two weeks, after which NMR metabolomics and RNA sequencing analyses were performed. Pkd1 deletion resulted in clear metabolomic dysregulation. Short salsalate treatment has small, but significant, effects, reverting acetylcarnitine and phosphocholine concentrations back to wildtype levels, and showing associations with altered purine metabolism. RNA sequencing revealed that short salsalate treatment, next to restoring energy metabolism toward wildtype levels, also affects cell proliferation and inflammation, in PKD. We show that salsalate positively affects major dysregulated processes in ADPKD: energy metabolism, cell proliferation, and inflammation, providing more insights into its working mechanisms.

5.
FASEB J ; 37(11): e23232, 2023 11.
Article in English | MEDLINE | ID: mdl-37819258

ABSTRACT

In the kidney, the flow rate of the pro-urine through the renal tubules is highly variable. The tubular epithelial cells sense these variations in pro-urinary flow rate in order to regulate various physiological processes, including electrolyte reabsorption. One of the mechanosensitive pathways activated by flow is the release of ATP, which can then act as a autocrine or paracrine factor. Increased ATP release is observed in various kidney diseases, among others autosomal dominant polycystic kidney disease (ADPKD). However, the mechanisms underlying flow-induced ATP release in the collecting duct, especially in the inner medullary collecting duct, remain understudied. Using inner medullary collecting duct 3 (IMCD3) cells in a microfluidic setup, we show here that administration of a high flow rate for 1 min results in an increased ATP release compared to a lower flow rate. Although the ATP release channel pannexin-1 contributed to flow-induced ATP release in Pkd1-/- IMCD3 cells, it did not in wildtype IMCD3 cells. In addition, flow application increased the expression of the putative ATP release channel connexin-30.3 (CX30.3) in wildtype and Pkd1-/- IMCD3 cells. However, CX30.3 knockout IMCD3 cells exhibited a similar flow-induced ATP release as wildtype IMCD3 cells, suggesting that CX30.3 does not drive flow-induced ATP release in wildtype IMDC3 cells. Collectively, our results show differential mechanisms underlying flow-induced ATP release in wildtype and Pkd1-/- IMCD3 cells and further strengthen the link between ADPKD and pannexin-1-dependent ATP release.


Subject(s)
Kidney Tubules, Collecting , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/metabolism , Kidney/metabolism , Gene Expression , Adenosine Triphosphate/metabolism , Kidney Tubules, Collecting/metabolism
6.
iScience ; 26(6): 106877, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37275529

ABSTRACT

The kidney's cellular diversity is on par with its physiological intricacy; yet identifying cell populations and their markers remains challenging. Here, we created a comprehensive atlas of the healthy adult mouse kidney (MKA: Mouse Kidney Atlas) by integrating 140.000 cells and nuclei from 59 publicly available single-cell and single-nuclei RNA-sequencing datasets from eight independent studies. To harmonize annotations across datasets, we built a hierarchical model of the cell populations. Our model allows the incorporation of novel cell populations and the refinement of known profiles as more datasets become available. Using MKA and the learned model of cellular hierarchies, we predicted previously missing cell annotations from several studies. The MKA allowed us to identify reproducible markers across studies for poorly understood cell types and transitional states, which we verified using existing data from micro-dissected samples and spatial transcriptomics.

7.
FASEB J ; 37(7): e23006, 2023 07.
Article in English | MEDLINE | ID: mdl-37249915

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of fluid-filled cysts within the kidney due to mutations in PKD1 or PKD2. Although the disease remains incompletely understood, one of the factors associated with ADPKD progression is the release of nucleotides (including ATP), which can initiate autocrine or paracrine purinergic signaling by binding to their receptors. Recently, we and others have shown that increased extracellular vesicle (EVs) release from PKD1 knockout cells can stimulate cyst growth through effects on recipient cells. Given that EVs are an important communicator between different nephron segments, we hypothesize that EVs released from PKD1 knockout distal convoluted tubule (DCT) cells can stimulate cyst growth in the downstream collecting duct (CD). Here, we show that administration of EVs derived from Pkd1-/- mouse distal convoluted tubule (mDCT15) cells result in a significant increase in extracellular ATP release from Pkd1-/- mouse inner medullary collecting duct (iMCD3) cells. In addition, exposure of Pkd1-/- iMCD3 cells to EVs derived from Pkd1-/- mDCT15 cells led to an increase in the phosphorylation of the serine/threonine-specific protein Akt, suggesting activation of proliferative pathways. Finally, the exposure of iMCD3 Pkd1-/- cells to mDCT15 Pkd1-/- EVs increased cyst size in Matrigel. These findings indicate that EVs could be involved in intersegmental communication between the distal convoluted tubule and the collecting duct and potentially stimulate cyst growth.


Subject(s)
Cysts , Extracellular Vesicles , Polycystic Kidney, Autosomal Dominant , Mice , Animals , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Kidney/metabolism , Cell Communication , Extracellular Vesicles/metabolism , Adenosine Triphosphate/metabolism , Cysts/metabolism , TRPP Cation Channels/metabolism
8.
Front Mol Biosci ; 10: 1058825, 2023.
Article in English | MEDLINE | ID: mdl-36743216

ABSTRACT

Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder and an important cause of end stage renal disease (ESRD). Tolvaptan (a V2R antagonist) is the first disease modifier drug for treatment of ADPKD, but also causes severe polyuria. AMPK activators have been shown to attenuate cystic kidney disease. Methods: In this study, we tested the efficacy of the combined administration of salsalate (a direct AMPK activator) and tolvaptan using clinically relevant doses in an adult-onset conditional Pkd1 knock-out (KO) mouse model. Results: Compared to untreated Pkd1 mutant mice, the therapeutic effects of salsalate were similar to that of tolvaptan. The combined treatment tended to be more effective than individual drugs used alone, and was associated with improved kidney survival (p < 0.0001) and reduced kidney weight to body weight ratio (p < 0.0001), cystic index (p < 0.001) and blood urea levels (p < 0.001) compared to untreated animals, although the difference between combination and single treatments was not statistically significant. Gene expression profiling and protein expression and phosphorylation analyses support the mild beneficial effects of co-treatment, and showed that tolvaptan and salsalate cooperatively attenuated kidney injury, cell proliferation, cell cycle progression, inflammation and fibrosis, and improving mitochondrial health, and cellular antioxidant response. Conclusion: These data suggest that salsalate-tolvaptan combination, if confirmed in clinical testing, might represent a promising therapeutic strategy in the treatment of ADPKD.

9.
FEBS Lett ; 597(9): 1290-1299, 2023 05.
Article in English | MEDLINE | ID: mdl-36776133

ABSTRACT

Ocular pterygium-digital keloid dysplasia (OPDKD) is a rare hereditary disease characterized by corneal ingrowth of vascularized conjunctival tissue early in life. Later, patients develop keloids on fingers and toes but are otherwise healthy. In a recently described family with OPDKD, we report the presence of a de novo c.770C > T, p.(Thr257Ile) variant in PELI2 in the affected individual. PELI2 encodes for the E3 ubiquitin ligase Pellino-2. In transgenic U87MG cells overexpressing Pellino-2 with the p.(Thr257Ile) amino acid substitution, constitutive activation of the NLRP3 inflammasome was observed. However, the Thr257Ile variant did not affect Pellino-2 intracellular localization, its binding to known interaction partners, nor its stability. Our findings indicate that constitutive autoactivation of the NLRP3 inflammasome contributes to the development of PELI2-associated OPDKD.


Subject(s)
Keloid , Pterygium , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Keloid/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pterygium/genetics , Ubiquitin-Protein Ligases/metabolism
10.
J Nephrol ; 36(4): 987-997, 2023 05.
Article in English | MEDLINE | ID: mdl-36342644

ABSTRACT

BACKGROUND: Age- and height-adjusted total kidney volume is currently considered the best prognosticator in patients with autosomal dominant polycystic kidney disease. We tested the ratio of urinary epidermal growth factor and monocyte chemotactic peptide 1 for the prediction of the Mayo Clinic Imaging Classes. METHODS: Urinary epidermal growth factor and monocyte chemotactic peptide 1 levels were measured in two independent cohorts (discovery, n = 74 and validation set, n = 177) and healthy controls (n = 59) by immunological assay. Magnetic resonance imaging parameters were used for total kidney volume calculation and the Mayo Clinic Imaging Classification defined slow (1A-1B) and fast progressors (1C-1E). Microarray and quantitative gene expression analysis were used to test epidermal growth factor and monocyte chemotactic peptide 1 gene expression. RESULTS: Baseline ratio of urinary epidermal growth factor and monocyte chemotactic peptide 1 correlated with total kidney volume adjusted for height (r = - 0.6, p < 0.001), estimated glomerular filtration rate (r = 0.69 p < 0.001), discriminated between Mayo Clinic Imaging Classes (p < 0.001), and predicted the variation of estimated glomerular filtration rate at 10 years (r = - 0.51, p < 0.001). Conditional Inference Trees identified cut-off levels of the ratio of urinary epidermal growth factor and monocyte chemotactic peptide 1 for slow and fast progressors at > 132 (100% slow) and < 25.76 (89% and 86% fast, according to age), with 94% sensitivity and 66% specificity (p = 6.51E-16). Further, the ratio of urinary epidermal growth factor and monocyte chemotactic peptide 1 at baseline showed a positive correlation (p = 0.006, r = 0.36) with renal outcome (delta-estimated glomerular filtration rate per year, over a mean follow-up of 4.2 ± 1.2 years). Changes in the urinary epidermal growth factor and monocyte chemotactic peptide 1 were mirrored by gene expression levels in both human kidney cysts (epidermal growth factor: - 5.6-fold, fdr = 0.001; monocyte chemotactic peptide 1: 3.1-fold, fdr = 0.03) and Pkd1 knock-out mouse kidney (Egf: - 14.8-fold, fdr = 2.37E-20, Mcp1: 2.8-fold, fdr = 6.82E-15). CONCLUSION: The ratio of urinary epidermal growth factor and monocyte chemotactic peptide 1 is a non-invasive pathophysiological biomarker that can be used for clinical risk stratification in autosomal dominant polycystic kidney disease.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Animals , Humans , Mice , Disease Progression , Epidermal Growth Factor/genetics , Kidney , Monocytes/pathology , Polycystic Kidney, Autosomal Dominant/diagnostic imaging , Polycystic Kidney, Autosomal Dominant/genetics
11.
Hypertension ; 79(11): 2542-2551, 2022 11.
Article in English | MEDLINE | ID: mdl-36093769

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease is the most frequent hereditary kidney disease and is generally due to mutations in PKD1 and PKD2, encoding polycystins 1 and 2. In autosomal dominant polycystic kidney disease, hypertension and cardiovascular disorders are highly prevalent, but their mechanisms are partially understood. METHODS: Since endothelial cells express the polycystin complex, where it plays a central role in the mechanotransduction of blood flow, we generated a murine model with inducible deletion of Pkd1 in endothelial cells (Cdh5-CreERT2;Pkd1fl/fl) to specifically determine the role of endothelial polycystin-1 in autosomal dominant polycystic kidney disease. RESULTS: Endothelial deletion of Pkd1 induced endothelial dysfunction, as demonstrated by impaired flow-mediated dilatation of resistance arteries and impaired relaxation to acetylcholine, increased blood pressure and prevented the normal development of arteriovenous fistula. In experimental chronic kidney disease induced by subtotal nephrectomy, endothelial deletion of Pkd1 further aggravated endothelial dysfunction, vascular remodeling, and heart hypertrophy. CONCLUSIONS: Altogether, this study provides the first in vivo demonstration that specific deletion of Pkd1 in endothelial cells promotes endothelial dysfunction and hypertension, impairs arteriovenous fistula development, and potentiates the cardiovascular alterations associated with chronic kidney disease.


Subject(s)
Arteriovenous Fistula , Cardiovascular Diseases , Hypertension , Polycystic Kidney, Autosomal Dominant , Renal Insufficiency, Chronic , Mice , Humans , Animals , TRPP Cation Channels/genetics , Polycystic Kidney, Autosomal Dominant/genetics , Mechanotransduction, Cellular , Endothelial Cells , Hypertension/genetics , Endothelium
12.
Am J Nephrol ; 53(6): 470-480, 2022.
Article in English | MEDLINE | ID: mdl-35613556

ABSTRACT

INTRODUCTION: In autosomal dominant polycystic kidney disease (ADPKD) patients, predicting renal disease progression is important to make a prognosis and to support the clinical decision whether to initiate renoprotective therapy. Conventional markers all have their limitations. Metabolic profiling is a promising strategy for risk stratification. We determined the prognostic performance to identify patients with a fast progressive disease course and evaluated time-dependent changes in urinary metabolites. METHODS: Targeted, quantitative metabolomics analysis (1H NMR-spectroscopy) was performed on spot urinary samples at two time points, baseline (n = 324, 61% female; mean age 45 years, SD 11; median eGFR 61 mL/min/1.73 m2, IQR 42-88; mean years of creatinine follow-up 3.7, SD 1.3) and a sample obtained after 3 years of follow-up (n = 112). Patients were stratified by their eGFR slope into fast and slow progressors based on an annualized change of > -3.0 or ≤ -3.0 mL/min/1.73 m2/year, respectively. Fifty-five urinary metabolites and ratios were quantified, and the significant ones were selected. Logistic regression was used to determine prognostic performance in identifying those with a fast progressive course using baseline urine samples. Repeated-measures ANOVA was used to analyze whether changes in urinary metabolites over a 3-year follow-up period differed between fast and slow progressors. RESULTS: In a single urinary sample, the prognostic performance of urinary metabolites was comparable to that of a model including height-adjusted total kidney volume (htTKV, AUC = 0.67). Combined with htTKV, the predictive value of the metabolite model increased (AUC = 0.75). Longitudinal analyses showed an increase in the myoinositol/citrate ratio (p < 0.001) in fast progressors, while no significant change was found in those with slow progression, which is in-line with an overall increase in the myoinositol/citrate ratio as GFR declines. CONCLUSION: A metabolic profile, measured at a single time point, showed at least equivalent prognostic performance to an imaging-based risk marker in ADPKD. Changes in urinary metabolites over a 3-year follow-up period were associated with a fast progressive disease course.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Citric Acid/metabolism , Disease Progression , Female , Glomerular Filtration Rate , Humans , Inositol/metabolism , Kidney , Male , Middle Aged
13.
Clin J Am Soc Nephrol ; 17(4): 507-517, 2022 04.
Article in English | MEDLINE | ID: mdl-35314480

ABSTRACT

BACKGROUND AND OBJECTIVES: The vasopressin V2 receptor antagonist tolvaptan is the only drug that has been proven to be nephroprotective in autosomal dominant polycystic kidney disease (ADPKD). Tolvaptan also causes polyuria, limiting tolerability. We hypothesized that cotreatment with hydrochlorothiazide or metformin may ameliorate this side effect. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We performed a clinical study and an animal study. In a randomized, controlled, double-blind, crossover trial, we included 13 tolvaptan-treated patients with ADPKD. Patients were treated for three 2-week periods with hydrochlorothiazide, metformin, or placebo in random order. Primary outcome was change in 24-hour urine volume. We also measured GFR and a range of metabolic and kidney injury markers. RESULTS: Patients (age 45±8 years, 54% women, measured GFR of 55±11 ml/min per 1.73 m2) had a baseline urine volume on tolvaptan of 6.9±1.4 L/24 h. Urine volume decreased to 5.1 L/24 h (P<0.001) with hydrochlorothiazide and to 5.4 L/24 h (P<0.001) on metformin. During hydrochlorothiazide treatment, plasma copeptin (surrogate for vasopressin) decreased, quality of life improved, and several markers of kidney damage and glucose metabolism improved. Metformin did not induce changes in these markers or in quality of life. Given these results, the effect of adding hydrochlorothiazide to tolvaptan was investigated on long-term kidney outcome in an animal experiment. Water intake in tolvaptan-hydrochlorothiazide cotreated mice was 35% lower than in mice treated with tolvaptan only. Combination treatment was superior to "no treatment" on markers of disease progression (kidney weight, P=0.003 and cystic index, P=0.04) and superior or equal to tolvaptan alone. CONCLUSIONS: Both metformin and hydrochlorothiazide reduced tolvaptan-caused polyuria in a short-term study. Hydrochlorothiazide also reduced polyuria in a long-term animal model without negatively affecting nephroprotection. PODCAST: This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_03_21_CJN11260821.mp3.


Subject(s)
Antidiuretic Hormone Receptor Antagonists , Hydrochlorothiazide , Kidney , Metformin , Polycystic Kidney, Autosomal Dominant , Polyuria , Adult , Animals , Antidiuretic Hormone Receptor Antagonists/adverse effects , Antidiuretic Hormone Receptor Antagonists/therapeutic use , Cross-Over Studies , Female , Humans , Hydrochlorothiazide/pharmacology , Hydrochlorothiazide/therapeutic use , Kidney/drug effects , Kidney/physiopathology , Male , Metformin/pharmacology , Metformin/therapeutic use , Mice , Middle Aged , Polycystic Kidney, Autosomal Dominant/drug therapy , Polyuria/chemically induced , Polyuria/prevention & control , Quality of Life , Receptors, Vasopressin/therapeutic use , Tolvaptan/adverse effects , Tolvaptan/therapeutic use , Treatment Outcome
14.
Diabetologia ; 65(6): 1032-1047, 2022 06.
Article in English | MEDLINE | ID: mdl-35290476

ABSTRACT

AIMS/HYPOTHESIS: Renal GLUT2 is increased in diabetes, thereby enhancing glucose reabsorption and worsening hyperglycaemia. Here, we determined whether loss of Glut2 (also known as Slc2a2) specifically in the kidneys would reverse hyperglycaemia and normalise body weight in mouse models of diabetes and obesity. METHODS: We used the tamoxifen-inducible CreERT2-Lox system in mice to knockout Glut2 specifically in the kidneys (Ks-Glut2 KO) to establish the contribution of renal GLUT2 to systemic glucose homeostasis in health and in insulin-dependent as well as non-insulin-dependent diabetes. We measured circulating glucose and insulin levels in response to OGTT or IVGTT under different experimental conditions in the Ks-Glut2 KO and their control mice. Moreover, we quantified urine glucose levels to explain the phenotype of the mice independently of insulin actions. We also used a transcription factor array to identify mechanisms underlying the crosstalk between renal GLUT2 and sodium-glucose cotransporter 2 (SGLT2). RESULTS: The Ks-Glut2 KO mice exhibited improved glucose tolerance and massive glucosuria. Interestingly, this improvement in blood glucose control was eliminated when we knocked out Glut2 in the liver in addition to the kidneys, suggesting that the improvement is attributable to the lack of renal GLUT2. Remarkably, induction of renal Glut2 deficiency reversed hyperglycaemia and normalised body weight in mouse models of diabetes and obesity. Longitudinal monitoring of renal glucose transporters revealed that Sglt2 (also known as Slc5a2) expression was almost abolished 3 weeks after inducing renal Glut2 deficiency. To identify a molecular basis for this crosstalk, we screened for renal transcription factors that were downregulated in the Ks-Glut2 KO mice. Hnf1α (also known as Hnf1a) was among the genes most downregulated and its recovery restored Sglt2 expression in primary renal proximal tubular cells isolated from the Ks-Glut2 KO mice. CONCLUSIONS/INTERPRETATION: Altogether, these results demonstrate a novel crosstalk between renal GLUT2 and SGLT2 in regulating systemic glucose homeostasis via glucose reabsorption. Our findings also indicate that inhibiting renal GLUT2 is a potential therapy for diabetes and obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Glycosuria , Hyperglycemia , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Female , Glucose/metabolism , Glucose Transporter Type 2 , Glycosuria/metabolism , Humans , Hyperglycemia/metabolism , Insulin/metabolism , Kidney/metabolism , Male , Mice , Obesity/genetics , Obesity/metabolism , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism
15.
Am J Hum Genet ; 109(1): 136-156, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34890546

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD), characterized by progressive cyst formation/expansion, results in enlarged kidneys and often end stage kidney disease. ADPKD is genetically heterogeneous; PKD1 and PKD2 are the common loci (∼78% and ∼15% of families) and GANAB, DNAJB11, and ALG9 are minor genes. PKD is a ciliary-associated disease, a ciliopathy, and many syndromic ciliopathies have a PKD phenotype. In a multi-cohort/-site collaboration, we screened ADPKD-diagnosed families that were naive to genetic testing (n = 834) or for whom no PKD1 and PKD2 pathogenic variants had been identified (n = 381) with a PKD targeted next-generation sequencing panel (tNGS; n = 1,186) or whole-exome sequencing (WES; n = 29). We identified monoallelic IFT140 loss-of-function (LoF) variants in 12 multiplex families and 26 singletons (1.9% of naive families). IFT140 is a core component of the intraflagellar transport-complex A, responsible for retrograde ciliary trafficking and ciliary entry of membrane proteins; bi-allelic IFT140 variants cause the syndromic ciliopathy, short-rib thoracic dysplasia (SRTD9). The distinctive monoallelic phenotype is mild PKD with large cysts, limited kidney insufficiency, and few liver cysts. Analyses of the cystic kidney disease probands of Genomics England 100K showed that 2.1% had IFT140 LoF variants. Analysis of the UK Biobank cystic kidney disease group showed probands with IFT140 LoF variants as the third most common group, after PKD1 and PKD2. The proximity of IFT140 to PKD1 (∼0.5 Mb) in 16p13.3 can cause diagnostic confusion, and PKD1 variants could modify the IFT140 phenotype. Importantly, our studies link a ciliary structural protein to the ADPKD spectrum.


Subject(s)
Alleles , Carrier Proteins , Genetic Predisposition to Disease , Mutation , Polycystic Kidney, Autosomal Dominant/genetics , Adult , Aged , Amino Acid Substitution , Biological Specimen Banks , Cilia/pathology , DNA Copy Number Variations , Female , Genetic Association Studies , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Kidney Function Tests , Male , Middle Aged , Pedigree , Phenotype , Polycystic Kidney, Autosomal Dominant/diagnosis , Sequence Analysis, DNA , United Kingdom , Exome Sequencing
17.
Kidney Int ; 98(2): 404-419, 2020 08.
Article in English | MEDLINE | ID: mdl-32622526

ABSTRACT

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a major cause of end-stage kidney disease in man. The central role of cyclic adenosine monophosphate (cAMP) in ADPKD pathogenesis has been confirmed by numerous studies including positive clinical trial data. Here, we investigated the potential role of another major regulator of renal cAMP, prostaglandin E2 (PGE2), in modifying disease progression in ADPKD models using selective receptor modulators to all four PGE2 receptor subtypes (EP1-4). In 3D-culture model systems utilizing dog (MDCK) and patient-derived (UCL93, OX161-C1) kidney cell lines, PGE2 strikingly promoted cystogenesis and inhibited tubulogenesis by stimulating proliferation while reducing apoptosis. The effect of PGE2 on tubulogenesis and cystogenesis in 3D-culture was mimicked or abolished by selective EP2 and EP4 agonists or antagonists but not those specific to EP1 or EP3. In a Pkd1 mouse model (Pkd1nl/nl), kidney PGE2 and COX-2 expression were increased by two-fold at the peak of disease (week four). However, Pkd1nl/nl mice treated with selective EP2 (PF-04418948) or EP4 (ONO-AE3-208) antagonists from birth for three weeks had more severe cystic disease and fibrosis associated with increased cell proliferation and macrophage infiltration. A similar effect was observed for the EP4 antagonist ONO-AE3-208 in a second Pkd1 model (Pax8rtTA-TetO-Cre-Pkd1f/f). Thus, despite the positive effects of slowing cyst growth in vitro, the more complex effects of inhibiting EP2 or EP4 in vivo resulted in a worse outcome, possibly related to unexpected pro-inflammatory effects.


Subject(s)
Dinoprostone , Receptors, Prostaglandin E, EP2 Subtype , Animals , Cyclic AMP , Dogs , Humans , Inflammation/drug therapy , Kidney , Mice
18.
J Cell Mol Med ; 24(15): 8876-8882, 2020 08.
Article in English | MEDLINE | ID: mdl-32592332

ABSTRACT

The Hippo pathway is a highly conserved signalling route involved in organ size regulation. The final effectors of this pathway are two transcriptional coactivators, yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (WWTR1 or TAZ). Previously, we showed aberrant activation of the Hippo pathway in autosomal-dominant polycystic kidney disease (ADPKD), suggesting that YAP/TAZ might play a role in disease progression. Using antisense oligonucleotides (ASOs) in a mouse model for ADPKD, we efficiently down-regulated Yap levels in the kidneys. However, we did not see any effect on cyst formation or growth. Moreover, the expression of YAP/TAZ downstream targets was not changed, while WNT and TGF-ß pathways' downstream targets Myc, Acta2 and Vim were more expressed after Yap knockdown. Overall, our data indicate that reducing YAP levels is not a viable strategy to modulate PKD progression.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Gene Expression Regulation , Genetic Association Studies , Mutation , Phenotype , Polycystic Kidney Diseases/genetics , Protein Kinase C/genetics , Animals , Cell Line , Disease Models, Animal , Female , Immunohistochemistry , Mice , Mice, Knockout , Polycystic Kidney Diseases/diagnosis , YAP-Signaling Proteins
19.
Kidney Int ; 98(4): 989-998, 2020 10.
Article in English | MEDLINE | ID: mdl-32534051

ABSTRACT

In autosomal dominant polycystic kidney disease (ADPKD), there are only scarce data on the effect of salt and protein intake on disease progression. Here we studied association of these dietary factors with the rate of disease progression in ADPKD and what the mediating factors are by analyzing an observational cohort of 589 patients with ADPKD. Salt and protein intake were estimated from 24-hour urine samples and the plasma copeptin concentration measured as a surrogate for vasopressin. The association of dietary intake with annual change in the estimated glomerular filtration rate (eGFR) and height adjusted total kidney volume (htTKV) growth was analyzed with mixed models. In case of significant associations, mediation analyses were performed to elucidate potential mechanisms. These patients (59% female) had a mean baseline age of 47, eGFR 64 mL/min/1.73m2 and the median htTKV was 880 mL. The mean estimated salt intake was 9.1 g/day and protein intake 84 g/day. During a median follow-up of 4.0 years, eGFR was assessed a median of six times and 24-hour urine was collected a median of five times. Salt intake was significantly associated with annual change in eGFR of -0.11 (95% confidence interval 0.20 - -0.02] mL/min/1.73m2) per gram of salt, whereas protein intake was not (-0.00001 [-0.01 - 0.01] mL/min/1.73m2) per gram of protein). The effect of salt intake on eGFR slope was significantly mediated by plasma copeptin (crude analysis: 77% mediation, and, adjusted analysis: 45% mediation), but not by systolic blood pressure. Thus, higher salt, but not higher protein intake may be detrimental in ADPKD. The substantial mediation by plasma copeptin suggests that this effect is primarily a consequence of a salt-induced rise in vasopressin.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Disease Progression , Female , Glomerular Filtration Rate , Humans , Kidney , Male , Sodium Chloride, Dietary/adverse effects
20.
PLoS One ; 15(5): e0233213, 2020.
Article in English | MEDLINE | ID: mdl-32442208

ABSTRACT

BACKGROUND: The variable course of autosomal dominant polycystic kidney disease (ADPKD), and the advent of renoprotective treatment require early risk stratification. We applied urinary metabolomics to explore differences associated with estimated glomerular filtration rate (eGFR; CKD-EPI equation) and future eGFR decline. METHODS: Targeted, quantitative metabolic profiling (1H NMR-spectroscopy) was performed on baseline spot urine samples obtained from 501 patients with ADPKD. The discovery cohort consisted of 338 patients (56% female, median values for age 46 [IQR 38 to 52] years, eGFR 62 [IQR 45 to 85] ml/min/1.73m2, follow-up time 2.5 [range 1 to 3] years, and annual eGFR slope -3.3 [IQR -5.3 to -1.3] ml/min/1.73m2/year). An independent cohort (n = 163) was used for validation. Multivariate modelling and linear regression were used to analyze the associations between urinary metabolites and eGFR, and eGFR decline over time. RESULTS: Twenty-nine known urinary metabolites were quantified from the spectra using a semi-automatic quantification routine. The model optimization routine resulted in four metabolites that most strongly associated with actual eGFR in the discovery cohort (F = 128.9, P = 7×10-54, R2 = 0.724). A model using the ratio of two other metabolites, urinary alanine/citrate, showed the best association with future annual change in eGFR (F = 51.07, P = 7.26×10-12, R2 = 0.150). This association remained significant after adjustment for clinical risk markers including height-adjusted total kidney volume (htTKV). Results were confirmed in the validation cohort. CONCLUSIONS: Quantitative NMR profiling identified urinary metabolic markers that associated with actual eGFR and future rate of eGFR decline. The urinary alanine/citrate ratio showed additional value beyond conventional risk markers.


Subject(s)
Glomerular Filtration Rate , Kidney/metabolism , Models, Biological , Polycystic Kidney, Autosomal Dominant/urine , Adult , Biomarkers/urine , Female , Humans , Kidney/pathology , Male , Middle Aged , Polycystic Kidney, Autosomal Dominant/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...