Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
PNAS Nexus ; 3(1): pgad451, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38222467

ABSTRACT

Dense suspensions exhibit the remarkable ability to switch dynamically and reversibly from a fluid-like to a solid-like, shear-jammed (SJ) state. Here, we show how this transition has important implications for the propensity for forming fractures. We inject air into bulk dense cornstarch suspensions and visualize the air invasion into the opaque material using time-resolved X-ray radiography. For suspensions with cornstarch mass fractions high enough to exhibit discontinuous shear thickening and shear jamming, we show that air injection leads to fractures in the material. For high mass fractions, these fractures grow quasistatically as rough cavities with fractured interfaces. For lower mass fractions, remarkably, the fractures can relax to smooth bubbles that then rise under buoyancy. We show that the onset of the relaxation occurs as the shear rate induced by the air cavity growth decreases below the critical shear rate denoting the onset of discontinuous shear thickening, which reveals a structural signature of the SJ state.

2.
Pediatr Neurol ; 113: 26-32, 2020 12.
Article in English | MEDLINE | ID: mdl-32980744

ABSTRACT

BACKGROUND: We aimed to expand the number of currently known pathogenic PNKP mutations, to study the phenotypic spectrum, including radiological characteristics and genotype-phenotype correlations, and to assess whether immunodeficiency and increased cancer risk are part of the DNA repair disorder caused by mutations in the PNKP gene. METHODS: We evaluated nine patients with PNKP mutations. A neurological history and examination was obtained. All patients had undergone neuroimaging and genetic testing as part of the prior diagnostic process. Laboratory measurements included potential biomarkers, and, in the context of a DNA repair disorder, we performed a detailed immunologic evaluation, including B cell repertoire analysis. RESULTS: We identified three new mutations in the PNKP gene and confirm the phenotypic spectrum of PNKP-associated disease, ranging from microcephaly, seizures, and developmental delay to ataxia with oculomotor apraxia type 4. Irrespective of the phenotype, alpha-fetoprotein is a biochemical marker and increases with age and progression of the disease. On neuroimaging, (progressive) cerebellar atrophy was a universal feature. No clinical signs of immunodeficiency were present, and immunologic assessment was unremarkable. One patient developed cancer, but this was attributed to a concurrent von Hippel-Lindau mutation. CONCLUSIONS: Immunodeficiency and cancer predisposition do not appear to be part of PNKP-associated disease, contrasting many other DNA repair disorders. Furthermore, our study illustrates that the previously described syndromes microcephaly, seizures, and developmental delay, and ataxia with oculomotor apraxia type 4, represent the extremes of an overlapping spectrum of disease. Cerebellar atrophy and elevated serum alpha-fetoprotein levels are early diagnostic findings across the entire phenotypical spectrum.


Subject(s)
DNA Repair Enzymes/genetics , Immunologic Deficiency Syndromes/epidemiology , Microcephaly/genetics , Mutation/genetics , Neoplasms/epidemiology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Spinocerebellar Ataxias/congenital , Adolescent , Child , Child, Preschool , Cohort Studies , Developmental Disabilities/genetics , Female , Genetic Association Studies , Humans , Male , Netherlands , Phenotype , Seizures/genetics , Spinocerebellar Ataxias/genetics , Young Adult
3.
Phys Rev E ; 100(6-1): 063105, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31962541

ABSTRACT

A vapor bubble collapsing near a solid boundary in a liquid produces a liquid jet that points toward the boundary. The direction of this jet has been studied for boundaries such as flat planes and parallel walls enclosing a channel. Extending these investigations to enclosed polygonal boundaries, we experimentally measure jet direction for collapsing bubbles inside a square and an equilateral triangular channel. Following the method of Tagawa and Peters [Phys. Rev. Fluids 3, 081601 (2018)10.1103/PhysRevFluids.3.081601] for predicting the jet direction in corners, we model the bubble as a sink in a potential flow and demonstrate by experiment that analytical solutions accurately predict jet direction within an equilateral triangle and square. We further use the method to develop predictions for several other polygons, specifically, a rectangle, an isosceles right triangle, and a 30^{∘}-60^{∘}-90^{∘} right triangle.

4.
Nat Commun ; 8(1): 509, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28894143

ABSTRACT

Scales are rooted in soft tissues, and are regenerated by specialized cells. The realization of dynamic synthetic analogues with inorganic materials has been a significant challenge, because the abiological regeneration sites that could yield deterministic growth behavior are hard to form. Here we overcome this fundamental hurdle by constructing a mutable and deformable array of three-dimensional calcite heterostructures that are partially locked in silicone. Individual calcite crystals exhibit asymmetrical dumbbell shapes and are prepared by a parallel tectonic approach under ambient conditions. The silicone matrix immobilizes the epitaxial nucleation sites through self-templated cavities, which enables symmetry breaking in reaction dynamics and scalable manipulation of the mineral ensembles. With this platform, we devise several mineral-enabled dynamic surfaces and interfaces. For example, we show that the induced growth of minerals yields localized inorganic adhesion for biological tissue and reversible focal encapsulation for sensitive components in flexible electronics.Minerals are rarely explored as building blocks for dynamic inorganic materials. Here, the authors derive inspiration from fish scales to create mutable surfaces based on arrays of calcite crystals, in which one end of each crystal is immobilized in and regenerated from silicone, and the other functional end is left exposed.

5.
Phys Rev E ; 95(1-1): 012603, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28208491

ABSTRACT

Unlike dry granular materials, a dense granular suspension like cornstarch in water can strongly resist extensional flows. At low extension rates, such a suspension behaves like a viscous fluid, but rapid extension results in a response where stresses far exceed the predictions of lubrication hydrodynamics and capillarity. To understand this remarkable mechanical response, we experimentally measure the normal force imparted by a large bulk of the suspension on a plate moving vertically upward at a controlled velocity. We observe that, above a velocity threshold, the peak force increases by orders of magnitude. Using fast ultrasound imaging we map out the local velocity profiles inside the suspension, which reveal the formation of a growing jammed region under rapid extension. This region interacts with the rigid boundaries of the container through strong velocity gradients, suggesting a direct connection to the recently proposed shear-jamming mechanism.

6.
Nat Commun ; 7: 12243, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27436628

ABSTRACT

A remarkable property of dense suspensions is that they can transform from liquid-like at rest to solid-like under sudden impact. Previous work showed that this impact-induced solidification involves rapidly moving jamming fronts; however, details of this process have remained unresolved. Here we use high-speed ultrasound imaging to probe non-invasively how the interior of a dense suspension responds to impact. Measuring the speed of sound we demonstrate that the solidification proceeds without a detectable increase in packing fraction, and imaging the evolving flow field we find that the shear intensity is maximized right at the jamming front. Taken together, this provides direct experimental evidence for jamming by shear, rather than densification, as driving the transformation to solid-like behaviour. On the basis of these findings we propose a new model to explain the anisotropy in the propagation speed of the fronts and delineate the onset conditions for dynamic shear jamming in suspensions.

7.
Phys Rev E ; 93(6): 062609, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27415322

ABSTRACT

We experimentally investigated the splashing of dense suspension droplets impacting a solid surface, extending prior work to the regime where the viscosity of the suspending liquid becomes a significant parameter. The overall behavior can be described by a combination of two trends. The first one is that the splashing becomes favored when the kinetic energy of individual particles at the surface of a droplet overcomes the confinement produced by surface tension. This is expressed by a particle-based Weber number We_{p}. The second is that splashing is suppressed by increasing the viscosity of the solvent. This is expressed by the Stokes number St, which influences the effective coefficient of restitution of colliding particles. We developed a phase diagram where the splashing onset is delineated as a function of both We_{p} and St. A surprising result occurs at very small Stokes number, where not only splashing is suppressed but also plastic deformation of the droplet. This leads to a situation where droplets can bounce back after impact, an observation we are able to reproduce using discrete particle numerical simulations that take into account viscous interaction between particles and elastic energy.

8.
Nature ; 532(7598): 214-7, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27042934

ABSTRACT

Liquid-like at rest, dense suspensions of hard particles can undergo striking transformations in behaviour when agitated or sheared. These phenomena include solidification during rapid impact, as well as strong shear thickening characterized by discontinuous, orders-of-magnitude increases in suspension viscosity. Much of this highly non-Newtonian behaviour has recently been interpreted within the framework of a jamming transition. However, although jamming indeed induces solid-like rigidity, even a strongly shear-thickened state still flows and thus cannot be fully jammed. Furthermore, although suspensions are incompressible, the onset of rigidity in the standard jamming scenario requires an increase in particle density. Finally, whereas shear thickening occurs in the steady state, impact-induced solidification is transient. As a result, it has remained unclear how these dense suspension phenomena are related and how they are connected to jamming. Here we resolve this by systematically exploring both the steady-state and transient regimes with the same experimental system. We demonstrate that a fully jammed, solid-like state can be reached without compression and instead purely with shear, as recently proposed for dry granular systems. This state is created by transient shear-jamming fronts, which we track directly. We also show that shear stress, rather than shear rate, is the key control parameter. From these findings we map out a state diagram with particle density and shear stress as variables. We identify discontinuous shear thickening with a marginally jammed regime just below the onset of full, solid-like jamming. This state diagram provides a unifying framework, compatible with prior experimental and simulation results on dense suspensions, that connects steady-state and transient behaviour in terms of a dynamic shear-jamming process.

9.
Soft Matter ; 10(34): 6564-70, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-25044124

ABSTRACT

We report experiments investigating jamming fronts in a floating layer of cornstarch suspension. The suspension has a packing fraction close to jamming, which dynamically turns into a solid when impacted at a high speed. We show that the front propagates in both axial and transverse direction from the point of impact, with a constant ratio between the two directions of propagation of approximately 2. Inside the jammed solid, we observe an additional compression, which results from the increasing stress as the solid grows. During the initial growth of the jammed solid, we measure a force response that can be completely accounted for by added mass. Only once the jamming front reaches a boundary, the added mass cannot account for the measured force anymore. We do not, however, immediately see a strong force response as we would expect when compressing a jammed packing. Instead, we observe a delay in the force response on the pusher, which corresponds to the time it takes for the system to develop a close to uniform velocity gradient that spans the complete system.

10.
J Vis Exp ; (85)2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24637404

ABSTRACT

In the field of fluid mechanics, many dynamical processes not only occur over a very short time interval but also require high spatial resolution for detailed observation, scenarios that make it challenging to observe with conventional imaging systems. One of these is the drop impact of liquids, which usually happens within one tenth of millisecond. To tackle this challenge, a fast imaging technique is introduced that combines a high-speed camera (capable of up to one million frames per second) with a macro lens with long working distance to bring the spatial resolution of the image down to 10 µm/pixel. The imaging technique enables precise measurement of relevant fluid dynamic quantities, such as the flow field, the spreading distance and the splashing speed, from analysis of the recorded video. To demonstrate the capabilities of this visualization system, the impact dynamics when droplets of non-Newtonian fluids impinge on a flat hard surface are characterized. Two situations are considered: for oxidized liquid metal droplets we focus on the spreading behavior, and for densely packed suspensions we determine the onset of splashing. More generally, the combination of high temporal and spatial imaging resolution introduced here offers advantages for studying fast dynamics across a wide range of microscale phenomena.


Subject(s)
Hydrodynamics , Image Processing, Computer-Assisted/methods , Video Recording/methods
11.
Article in English | MEDLINE | ID: mdl-24032934

ABSTRACT

We investigate the spontaneous oscillations of drops levitated above an air cushion, eventually inducing a breaking of axisymmetry and the appearance of "star drops". This is strongly reminiscent of the Leidenfrost stars that are observed for drops floating above a hot substrate. The key advantage of this work is that we inject the airflow at a constant rate below the drop, thus eliminating thermal effects and allowing for a better control of the flow rate. We perform experiments with drops of different viscosities and observe stable states, oscillations, and chimney instabilities. We find that for a given drop size the instability appears above a critical flow rate, where the latter is largest for small drops. All these observations are reproduced by numerical simulations, where we treat the drop using potential flow and the gas as a viscous lubrication layer. Qualitatively, the onset of instability agrees with the experimental results, although the typical flow rates are too large by a factor 10. Our results demonstrate that thermal effects are not important for the formation of star drops and strongly suggest a purely hydrodynamic mechanism for the formation of Leidenfrost stars.

12.
Phys Rev Lett ; 111(2): 028301, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23889449

ABSTRACT

We investigate the impact of droplets of dense suspensions onto a solid substrate. We show that a global hydrodynamic balance is unable to predict the splash onset and propose to replace it by an energy balance at the level of the particles in the suspension. We experimentally verify that the resulting, particle-based Weber number gives a reliable, particle size and density dependent splash onset criterion. We further show that the same argument also explains why, in bimodal systems, smaller particles are more likely to escape than larger ones.

13.
Phys Rev Lett ; 109(26): 264501, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23368566

ABSTRACT

At impact of a liquid drop on a solid surface, an air bubble can be entrapped. Here, we show that two competing effects minimize the (relative) size of this entrained air bubble: for large drop impact velocity and large droplets, the inertia of the liquid flattens the entrained bubble, whereas for small impact velocity and small droplets, capillary forces minimize the entrained bubble. However, we demonstrate experimentally, theoretically, and numerically that in between there is an optimum, leading to maximal air bubble entrapment. For a 1.8 mm diameter ethanol droplet, this optimum is achieved at an impact velocity of 0.25 m/s. Our results have a strong bearing on various applications in printing technology, microelectronics, immersion lithography, diagnostics, or agriculture.

14.
Phys Rev Lett ; 104(2): 024501, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20366598

ABSTRACT

A solid object impacting on liquid creates a liquid jet due to the collapse of the impact cavity. Using visualization experiments with smoke particles and multiscale simulations, we show that in addition, a high-speed air jet is pushed out of the cavity. Despite an impact velocity of only 1 m/s, this air jet attains supersonic speeds already when the cavity is slightly larger than 1 mm in diameter. The structure of the air flow closely resembles that of compressible flow through a nozzle-with the key difference that here the "nozzle" is a liquid cavity shrinking rapidly in time.

15.
Phys Rev Lett ; 103(11): 114501, 2009 Sep 11.
Article in English | MEDLINE | ID: mdl-19792376

ABSTRACT

Entrainment in wetting and dewetting flows often occurs through the formation of a corner with a very sharp tip. This corner singularity comes on top of the divergence of viscous stress near the contact line, which is only regularized at molecular scales. We investigate the fine structure of corners appearing at the rear of sliding drops. Experiments reveal a sudden decrease of tip radius, down to 20 microm, before entrainment occurs. We propose a lubrication model for this phenomenon, which compares well to experiments. Despite the disparity of length scales, it turns out that the tip size is set by the classical viscous singularity, for which we deduce a nanometric length from our macroscopic measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...