Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(13): 133801, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613295

ABSTRACT

We demonstrate that the time-integrated light intensity transmitted by a coherently driven resonator obeys Lévy's arcsine laws-a cornerstone of extreme value statistics. We show that convergence to the arcsine distribution is algebraic, universal, and independent of nonequilibrium behavior due to nonconservative forces or nonadiabatic driving. We furthermore verify, numerically, that the arcsine laws hold in the presence of frequency noise and in Kerr-nonlinear resonators supporting non-Gaussian states. The arcsine laws imply a weak ergodicity breaking which can be leveraged to enhance the precision of resonant optical sensors with zero energy cost, as shown in our companion manuscript [V. G. Ramesh et al., companion paper, Phys. Rev. Res. (2024).PPRHAI2643-1564]. Finally, we discuss perspectives for probing the possible breakdown of the arcsine laws in systems with memory.

2.
Phys Rev Lett ; 129(1): 013901, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35841548

ABSTRACT

Exceptional points (EPs)-spectral singularities of non-Hermitian linear systems-have recently attracted interest for sensing. While initial proposals and experiments focused on enhanced sensitivities neglecting noise, subsequent studies revealed issues with EP sensors in noisy environments. Here we propose a single-mode Kerr-nonlinear resonator for exceptional sensing in noisy environments. Based on the resonator's dynamic hysteresis, we define a signal that displays a square-root singularity reminiscent of an EP. However, our sensor has crucial fundamental and practical advantages over EP sensors: the signal-to-noise ratio increases with the measurement speed, the square-root singularity is easily detected through intensity measurements, and both sensing precision and information content of the signal are enhanced around the singularity. Our sensor also overcomes the fundamental trade-off between precision and averaging time characterizing all linear sensors. All these unconventional features open up new opportunities for fast and precise sensing using hysteretic resonators.

3.
Phys Rev Lett ; 128(5): 053901, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35179911

ABSTRACT

We report on the first experimental observation of spontaneous mirror symmetry breaking (SSB) in coherently driven-dissipative coupled optical cavities. SSB is observed as the breaking of the spatial or mirror Z_{2} symmetry between two symmetrically pumped and evanescently coupled photonic crystal nanocavities, and manifests itself as random intensity localization in one of the two cavities. We show that, in a system featuring repulsive boson interactions (U>0), the observation of a pure pitchfork bifurcation requires negative photon hopping energies (J<0), which we have realized in our photonic crystal molecule. SSB is observed over a wide range of the two-dimensional parameter space of driving intensity and detuning, where we also find a region that exhibits bistable symmetric behavior. Our results pave the way for the experimental study of limit cycles and deterministic chaos arising from SSB, as well as the study of nonclassical photon correlations close to SSB transitions.

4.
Phys Rev Lett ; 126(21): 213901, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34114877

ABSTRACT

We report the first observation of non-Markovian stochastic resonance (SR), and we discover that memory effects in the nonlinearity extremely enlarge the SR bandwidth. Our experimental system is an oil-filled microcavity which, driven by a continuous wave laser, has memory in its nonlinear optical response. Modulating the cavity length while adding noise to the driving laser, we observe a peak in the transmitted signal-to-noise ratio as a function of the noise variance. Through simulations, we reproduce our observations and extrapolate that the SR bandwidth could be ∼3000 times larger in our cavity than in a Kerr-nonlinear cavity. Experiments evidencing this memory-enhanced bandwidth across two decades are presented. As an extension of our results, we numerically demonstrate an order-of-magnitude enhancement in energy harvesting thanks to a nonlinearity with memory.

5.
Phys Rev Lett ; 124(15): 153603, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32357047

ABSTRACT

We investigate, experimentally and theoretically, the dynamics of a laser-driven cavity with noninstantaneous effective photon-photon interactions. Scanning the laser-cavity frequency detuning at different speeds across an optical bistability, we find a hysteresis area that is a nonmonotonic function of the speed. In the limit of fast scans comparable to the memory time of the interactions, we demonstrate that the hysteresis area decays following a universal power law with scaling exponent -1. We further demonstrate a regime of non-Markovian dynamics emerging from white noise. This regime is evidenced by peaked distributions of residence times in the metastable states of our system. Our results offer new perspectives for exploring the physics of scaling, universality, and metastability, in non-Markovian regimes using arrays of bistable optical cavities with low quality factors, driven by low laser powers, and at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...