Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Andrology ; 9(5): 1603-1616, 2021 09.
Article in English | MEDLINE | ID: mdl-33960147

ABSTRACT

BACKGROUND: Cancer treatment of prepubertal patients impacts future fertility due to the abolition of spermatogonial stem cells (SSCs). In macaques, spermatogenesis could be regenerated by intratesticular transplantation of SSCs, but no studies have involved cytotoxic treatment before puberty and transplantation after puberty, which would be the most likely clinical scenario. OBJECTIVES: To evaluate donor-derived functional sperm production after SSC transplantation to adult monkeys that had received testicular irradiation during the prepubertal period. MATERIALS AND METHODS: We obtained prepubertal testis tissue by unilaterally castrating six prepubertal monkeys and 2 weeks later irradiated the remaining testes with 6.9 Gy. However, because spermatogenic recovery was observed, we irradiated them again 14 months later with 7 Gy. Three of the monkeys were treated with GnRH-antagonist (GnRH-ant) for 8 weeks. The cryopreserved testis cells from the castrated testes were then allogeneically transplanted into the intact testes of all monkeys. Tissues were harvested 10 months later for analyses. RESULTS: In three of the six monkeys, 61%, 38%, and 11% of the epididymal sperm DNA were of the donor genotype. The ability to recover donor-derived sperm production was not enhanced by the GnRH-ant pretreatment. However, the extent of filling seminiferous tubules during the transplantation procedure was correlated with the eventual production of donor spermatozoa. The donor epididymal spermatozoa from the recipient with 61% donor contribution were capable of fertilizing rhesus eggs and forming embryos. Although the transplantation was done into the rete testis, two GnRH-ant-treated monkeys, which did not produce donor-derived epididymal spermatozoa, displayed irregular tubular cords in the interstitium containing testicular spermatozoa derived from the transplanted donor cells. DISCUSSION AND CONCLUSION: The results further support that sperm production can be restored in non-human primates from tissues cryopreserved prior to prepubertal and post-pubertal gonadotoxic treatment by transplantation of these testicular cells after puberty into seminiferous tubules.


Subject(s)
Adult Germline Stem Cells/transplantation , Puberty/radiation effects , Radiation Injuries, Experimental/therapy , Spermatogenesis/radiation effects , Stem Cell Transplantation , Animals , Cryopreservation , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Hormone Antagonists/administration & dosage , Macaca mulatta , Male , Radiation Injuries, Experimental/physiopathology , Seminiferous Tubules , Spermatozoa/radiation effects , Testis/physiopathology , Testis/radiation effects
2.
Andrology ; 8(5): 1428-1441, 2020 09.
Article in English | MEDLINE | ID: mdl-32351003

ABSTRACT

BACKGROUND: In male pre-pubertal cancer patients, radiation and chemotherapy impact future fertility by eradication of spermatogonial stem cells (SSCs). In macaques, spermatogenesis could be regenerated by intratesticular transplantation of SSCs, but only a small percentage of spermatozoa produced were of donor origin. Transient hormone suppression with a GnRH antagonist (GnRH-ant) enhanced spermatogenic recovery from transplanted SSCs. OBJECTIVES: To evaluate donor-derived and endogenous spermatogenic recovery after SSC transplantation into irradiated monkeys and to test whether hormone suppression around the time of transplantation facilitates spermatogenic recovery. MATERIALS AND METHODS: Testes of 15 adult rhesus monkeys were irradiated with 7 Gy and 4 months later transplanted, to one of the testes, with cryopreserved testicular cells containing SSCs from unrelated monkeys. Monkeys were either treated with GnRH-ant for 8 weeks before transplantation, GnRH-ant from 4 weeks before to 4 weeks after transplantation, or with no GnRH-ant. Tissues were harvested 10 months after transplantation. RESULTS: Two of the 15 monkeys, a control and a pre-transplantation GnRH-ant-treated, showed substantially higher levels of testicular spermatogenesis and epididymal sperm output in the transplanted side as compared to the untransplanted. Over 84% of epididymal spermatozoa on the transplanted side had the donor genotype and were capable of fertilizing eggs after intracytoplasmic sperm injection forming morulae of the donor paternal origin. Low levels of donor spermatozoa (~1%) were also identified in the epididymis of three additional monkeys. Transplantation also appeared to enhance endogenous spermatogenesis. DISCUSSION AND CONCLUSION: We confirmed that SSC transplantation can be used for restoration of fertility in male cancer survivors exposed to irradiation as a therapeutic agent. The success rate of this procedure, however, is low. The success of filling the tubules with the cell suspension, but not the GnRH-ant treatment, was related to the level of colonization by transplanted cells.


Subject(s)
Adult Germline Stem Cells/transplantation , Spermatogenesis/physiology , Spermatogonia/transplantation , Stem Cell Transplantation/methods , Testis/radiation effects , Animals , Macaca mulatta , Male , Radiation Injuries, Experimental
3.
Nat Commun ; 9(1): 5339, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30559363

ABSTRACT

A major challenge in stem cell differentiation is the availability of bioassays to prove cell types generated in vitro are equivalent to cells in vivo. In the mouse, differentiation of primordial germ cell-like cells (PGCLCs) from pluripotent cells was validated by transplantation, leading to the generation of spermatogenesis and to the birth of offspring. Here we report the use of xenotransplantation (monkey to mouse) and homologous transplantation (monkey to monkey) to validate our in vitro protocol for differentiating male rhesus (r) macaque PGCLCs (rPGCLCs) from induced pluripotent stem cells (riPSCs). Specifically, transplantation of aggregates containing rPGCLCs into mouse and nonhuman primate testicles overcomes a major bottleneck in rPGCLC differentiation. These findings suggest that immature rPGCLCs once transplanted into an adult gonadal niche commit to differentiate towards late rPGCs that initiate epigenetic reprogramming but do not complete the conversion into ENO2-positive spermatogonia.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/transplantation , Spermatocytes/cytology , Spermatogenesis/physiology , Spermatogonia/cytology , Testis/metabolism , Animals , Cells, Cultured , Female , Humans , Macaca mulatta , Male , Mice , Mice, Nude , Neoplasm Proteins/metabolism , Phosphopyruvate Hydratase/metabolism , Transplantation, Heterologous , Transplantation, Homologous
4.
Hum Reprod ; 33(12): 2249-2255, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30358843

ABSTRACT

STUDY QUESTION: Can transplanted primate testicular cells form seminiferous tubules de novo, supporting complete spermatogenesis? SUMMARY ANSWER: Cryopreserved testicular cells from a prepubertal monkey can reorganize in an adult monkey recipient testis forming de novo seminiferous tubular cords supporting complete spermatogenesis. WHAT IS KNOWN ALREADY: De novo morphogenesis of testicular tissue using aggregated cells from non-primate species grafted either subcutaneously or in the testis can support spermatogenesis. STUDY DESIGN, SIZE, DURATION: Two postpubertal rhesus monkeys (Macaca mulatta) were given testicular irradiation. One monkey was given GnRH-antagonist treatment from 8 to 16 weeks after irradiation, while the other received sham injections. At 16 weeks, cryopreserved testicular cells from two different prepubertal monkeys [43 × 106 viable (Trypan-blue excluding) cells in 260 µl, and 80 × 106 viable cells in 400 µl] were transplanted via ultrasound-guided injections to one of the rete testis in each recipient, and immune suppression was given. The contralateral testis was sham transplanted. Testes were analyzed 9 months after transplantation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Spermatogenic recovery was assessed by testicular volume, weight, histology and immunofluorescence. Microsatellite genotyping of regions of testicular sections obtained by LCM determined whether the cells were derived from the host or transplanted cells. MAIN RESULTS AND THE ROLE OF CHANCE: Transplanted testis of the GnRH-antagonist-treated recipient, but not the sham-treated recipient, contained numerous irregularly shaped seminiferous tubular cords, 89% of which had differentiating germ cells, including sperm in a few of them. The percentages of donor genotype in different regions of this testis were as follows: normal tubule, 0%; inflammatory, 0%; abnormal tubule region, 67%; whole interior of abnormal tubules, >99%; adluminal region of the abnormal tubules, 92%. Thus, these abnormal tubules, including the enclosed germ cells, were derived de novo from the donor testicular cells. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: The de novo tubules were observed in only one out of the two monkeys transplanted with prepubertal donor testicular cells. WIDER IMPLICATIONS OF THE FINDINGS: These findings may represent a promising strategy for restoration of fertility in male childhood cancer survivors. The approach could be particularly useful in those exposed to therapeutic agents that are detrimental to the normal development of the tubule somatic cells affecting the ability of the endogenous tubules to support spermatogenesis, even from transplanted spermatogonial stem cells. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by research grants P01 HD075795 from Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD/NIH) to K.E.O and Cancer Center Support Grant P30 CA016672 from NCI/NIH to The University of Texas MD Anderson Cancer Center. The authors declare that they have no competing interests.


Subject(s)
Seminiferous Tubules/physiology , Spermatogenesis/physiology , Testis/cytology , Testis/transplantation , Animals , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Hormone Antagonists/pharmacology , Macaca mulatta , Male
5.
Biol Reprod ; 96(3): 707-719, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28339678

ABSTRACT

Spermatogonial stem cells (SSC) are essential for spermatogenesis and male fertility. In addition, these adult tissue stem cells can be used as vehicles for germline modification in animal models and may have application for treating male infertility. To facilitate the investigation of SSCs and germ lineage development in rats, we generated a DEAD-box helicase 4 (DDX4) (VASA) promoter-enhanced green fluorescent protein (EGFP) reporter transgenic rat. Quantitative real-time polymerase chain reaction and immunofluorescence confirmed that EGFP was expressed in the germ cells of the ovaries and testes and was absent in somatic cells and tissues. Germ cell transplantation demonstrated that the EGFP-positive germ cell population from DDX4-EGFP rat testes contained SSCs capable of establishing spermatogenesis in experimentally infertile mouse recipient testes. EGFP-positive germ cells could be easily isolated by fluorescence-activated cells sorting, while simultaneously removing testicular somatic cells from DDX4-EGFP rat pup testes. The EGFP-positive fraction provided an optimal cell suspension to establish rat SSC cultures that maintained long-term expression of zinc finger and BTB domain containing 16 (ZBTB16) and spalt-like transcription factor 4 (SALL4), two markers of mouse SSCs that are conserved in rats. The novel DDX4-EGFP germ cell reporter rat described here combined with previously described GCS-EGFP rats, rat SSC culture and gene editing tools will improve the utility of the rat model for studying stem cells and germ lineage development.


Subject(s)
DEAD-box RNA Helicases/genetics , Germ Cells/metabolism , Green Fluorescent Proteins/metabolism , Models, Animal , Spermatogenesis , Adult Germline Stem Cells , Animals , Cells, Cultured , Female , Genes, Reporter , Male , Promoter Regions, Genetic , Rats, Sprague-Dawley , Rats, Transgenic
6.
Fertil Steril ; 102(2): 566-580.e7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24890267

ABSTRACT

OBJECTIVE: To determine the molecular characteristics of human spermatogonia and optimize methods to enrich spermatogonial stem cells (SSCs). DESIGN: Laboratory study using human tissues. SETTING: Research institute. PATIENT(S): Healthy adult human testicular tissue. INTERVENTION(S): Human testicular tissue was fixed or digested with enzymes to produce a cell suspension. Human testis cells were fractionated by fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS). MAIN OUTCOME MEASURE(S): Immunostaining for selected markers, human-to-nude mouse xenotransplantation assay. RESULT(S): Immunohistochemistry costaining revealed the relative expression patterns of SALL4, UTF1, ZBTB16, UCHL1, and ENO2 in human undifferentiated spermatogonia as well as the extent of overlap with the differentiation marker KIT. Whole mount analyses revealed that human undifferentiated spermatogonia (UCHL1+) were typically arranged in clones of one to four cells whereas differentiated spermatogonia (KIT+) were typically arranged in clones of eight or more cells. The ratio of undifferentiated-to-differentiated spermatogonia is greater in humans than in rodents. The SSC colonizing activity was enriched in the THY1dim and ITGA6+ fractions of human testes sorted by FACS. ITGA6 was effective for sorting human SSCs by MACS; THY1 and EPCAM were not. CONCLUSION(S): Human spermatogonial differentiation correlates with increased clone size and onset of KIT expression, similar to rodents. The undifferentiated-to-differentiated developmental dynamics in human spermatogonia is different than rodents. THY1, ITGA6, and EPCAM can be used to enrich human SSC colonizing activity by FACS, but only ITGA6 is amenable to high throughput sorting by MACS.


Subject(s)
Adult Stem Cells/metabolism , Cell Separation/methods , Flow Cytometry , Immunomagnetic Separation , Spermatogonia/metabolism , Testis/metabolism , Adult Stem Cells/transplantation , Animals , Antigens, Neoplasm/metabolism , Biomarkers/metabolism , Cell Adhesion Molecules/metabolism , Cell Differentiation , Cell Proliferation , Epithelial Cell Adhesion Molecule , Humans , Integrin alpha6/metabolism , Male , Mice , Mice, Nude , Proto-Oncogene Proteins c-kit/metabolism , Spermatogonia/transplantation , Testis/cytology , Testis/transplantation , Thy-1 Antigens/metabolism , Transplantation, Heterologous
7.
Cell Stem Cell ; 11(5): 715-26, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23122294

ABSTRACT

Spermatogonial stem cells (SSCs) maintain spermatogenesis throughout a man's life and may have application for treating some cases of male infertility, including those caused by chemotherapy before puberty. We performed autologous and allogeneic SSC transplantations into the testes of 18 adult and 5 prepubertal recipient macaques that were rendered infertile with alkylating chemotherapy. After autologous transplant, the donor genotype from lentivirus-marked SSCs was evident in the ejaculated sperm of 9/12 adult and 3/5 prepubertal recipients after they reached maturity. Allogeneic transplant led to donor-recipient chimerism in sperm from 2/6 adult recipients. Ejaculated sperm from one recipient transplanted with allogeneic donor SSCs were injected into 85 rhesus oocytes via intracytoplasmic sperm injection. Eighty-one oocytes were fertilized, producing embryos ranging from four-cell to blastocyst with donor paternal origin confirmed in 7/81 embryos. This demonstration of functional donor spermatogenesis following SSC transplantation in primates is an important milestone for informed clinical translation.


Subject(s)
Spermatogonia/transplantation , Spermatozoa/physiology , Testis/transplantation , Animals , Macaca mulatta , Male , Spermatogenesis , Stem Cell Transplantation , Testis/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...