Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Immunol ; 211(7): 1108-1122, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37594278

ABSTRACT

IL-2 has been proposed to restore tolerance via regulatory T cell (Treg) expansion in autoimmunity, yet off-target effects necessitate identification of a combinatorial approach allowing for lower IL-2 dosing. We recently reported reduced levels of immunoregulatory insulin-like growth factor-1 (IGF1) during type 1 diabetes progression. Thus, we hypothesized that IGF1 would synergize with IL-2 to expand Tregs. We observed IGF1 receptor was elevated on murine memory and human naive Treg subsets. IL-2 and IGF1 promoted PI3K/Akt signaling in Tregs, inducing thymically-derived Treg expansion beyond either agent alone in NOD mice. Increased populations of murine Tregs of naive or memory, as well as CD5lo polyclonal or CD5hi likely self-reactive, status were also observed. Expansion was attributed to increased IL-2Rγ subunit expression on murine Tregs exposed to IL-2 and IGF1 as compared with IL-2 or IGF1 alone. Assessing translational capacity, incubation of naive human CD4+ T cells with IL-2 and IGF1 enhanced thymically-derived Treg proliferation in vitro, without the need for TCR ligation. We then demonstrated that IGF1 and IL-2 or IL-7, which is also IL-2Rγ-chain dependent, can be used to induce proliferation of genetically engineered naive human Tregs or T conventional cells, respectively. These data support the potential use of IGF1 in combination with common γ-chain cytokines to drive homeostatic T cell expansion, both in vitro and in vivo, for cellular therapeutics and ex vivo gene editing.


Subject(s)
Insulin-Like Growth Factor I , T-Lymphocytes, Regulatory , Humans , Animals , Mice , Mice, Inbred NOD , Interleukin-2 , Phosphatidylinositol 3-Kinases , Cell Proliferation
2.
JCI Insight ; 8(17)2023 09 08.
Article in English | MEDLINE | ID: mdl-37498686

ABSTRACT

The proportions and phenotypes of immune cell subsets in peripheral blood undergo continual and dramatic remodeling throughout the human life span, which complicates efforts to identify disease-associated immune signatures in type 1 diabetes (T1D). We conducted cross-sectional flow cytometric immune profiling on peripheral blood from 826 individuals (stage 3 T1D, their first-degree relatives, those with ≥2 islet autoantibodies, and autoantibody-negative unaffected controls). We constructed an immune age predictive model in unaffected participants and observed accelerated immune aging in T1D. We used generalized additive models for location, shape, and scale to obtain age-corrected data for flow cytometry and complete blood count readouts, which can be visualized in our interactive portal (ImmScape); 46 parameters were significantly associated with age only, 25 with T1D only, and 23 with both age and T1D. Phenotypes associated with accelerated immunological aging in T1D included increased CXCR3+ and programmed cell death 1-positive (PD-1+) frequencies in naive and memory T cell subsets, despite reduced PD-1 expression levels on memory T cells. Phenotypes associated with T1D after age correction were predictive of T1D status. Our findings demonstrate advanced immune aging in T1D and highlight disease-associated phenotypes for biomarker monitoring and therapeutic interventions.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Infant , Cross-Sectional Studies , Programmed Cell Death 1 Receptor , Autoantibodies , Aging
3.
Front Immunol ; 14: 1142648, 2023.
Article in English | MEDLINE | ID: mdl-37325626

ABSTRACT

The autoimmune pathogenesis of type 1 diabetes (T1D) involves cellular infiltration from innate and adaptive immune subsets into the islets of Langerhans within the pancreas; however, the direct cytotoxic killing of insulin-producing ß-cells is thought to be mediated primarily by antigen-specific CD8+ T cells. Despite this direct pathogenic role, key aspects of their receptor specificity and function remain uncharacterized, in part, due to their low precursor frequency in peripheral blood. The concept of engineering human T cell specificity, using T cell receptor (TCR) and chimeric antigen receptor (CAR)-based approaches, has been demonstrated to improve adoptive cell therapies for cancer, but has yet to be extensively employed for modeling and treating autoimmunity. To address this limitation, we sought to combine targeted genome editing of the endogenous TCRα chain gene (TRAC) via CRISPR/Cas9 in combination with lentiviral vector (LV)-mediated TCR gene transfer into primary human CD8+ T cells. We observed that knockout (KO) of endogenous TRAC enhanced de novo TCR pairing, which permitted increased peptide:MHC-dextramer staining. Moreover, TRAC KO and TCR gene transfer increased markers of activation and effector function following activation, including granzyme B and interferon-γ production. Importantly, we observed increased cytotoxicity toward an HLA-A*0201+ human ß-cell line by HLA-A*02:01 restricted CD8+ T cells engineered to recognize islet-specific glucose-6-phosphatase catalytic subunit (IGRP). These data support the notion of altering the specificity of primary human T cells for mechanistic analyses of autoreactive antigen-specific CD8+ T cells and are expected to facilitate downstream cellular therapeutics to achieve tolerance induction through the generation of antigen-specific regulatory T cells.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Humans , CD8-Positive T-Lymphocytes , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Immunity, Cellular
4.
Sci Adv ; 9(22): eadg1082, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37267353

ABSTRACT

Extracellular vesicles (EVs) can affect immune responses through antigen presentation and costimulation or coinhibition. We generated designer EVs to modulate T cells in the context of type 1 diabetes, a T cell-mediated autoimmune disease, by engineering a lymphoblast cell line, K562, to express HLA-A*02 (HLA-A2) alongside costimulatory CD80 and/or coinhibitory programmed death ligand 1 (PD-L1). EVs presenting HLA-A2 and CD80 activated CD8+ T cells in a dose, antigen, and HLA-specific manner. Adding PD-L1 to these EVs produced an immunoregulatory response, reducing CD8+ T cell activation and cytotoxicity in vitro. EVs alone could not stimulate T cells without antigen-presenting cells. EVs lacking CD80 were ineffective at modulating CD8+ T cell activation, suggesting that both peptide-HLA complex and costimulation are required for EV-mediated immune modulation. These results provide mechanistic insight into the rational design of EVs as a cell-free approach to immunotherapy that can be tailored to promote inflammatory or tolerogenic immune responses.


Subject(s)
Diabetes Mellitus, Type 1 , Extracellular Vesicles , Humans , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , HLA-A2 Antigen/metabolism , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 1/metabolism , Extracellular Vesicles/metabolism
5.
Sci Data ; 10(1): 323, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37237059

ABSTRACT

The Network for Pancreatic Organ donors with Diabetes (nPOD) is the largest biorepository of human pancreata and associated immune organs from donors with type 1 diabetes (T1D), maturity-onset diabetes of the young (MODY), cystic fibrosis-related diabetes (CFRD), type 2 diabetes (T2D), gestational diabetes, islet autoantibody positivity (AAb+), and without diabetes. nPOD recovers, processes, analyzes, and distributes high-quality biospecimens, collected using optimized standard operating procedures, and associated de-identified data/metadata to researchers around the world. Herein describes the release of high-parameter genotyping data from this collection. 372 donors were genotyped using a custom precision medicine single nucleotide polymorphism (SNP) microarray. Data were technically validated using published algorithms to evaluate donor relatedness, ancestry, imputed HLA, and T1D genetic risk score. Additionally, 207 donors were assessed for rare known and novel coding region variants via whole exome sequencing (WES). These data are publicly-available to enable genotype-specific sample requests and the study of novel genotype:phenotype associations, aiding in the mission of nPOD to enhance understanding of diabetes pathogenesis to promote the development of novel therapies.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Tissue Donors , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Genomics , Pancreas
6.
Front Immunol ; 13: 873560, 2022.
Article in English | MEDLINE | ID: mdl-35693814

ABSTRACT

Regulatory T cell (Treg) adoptive cell therapy (ACT) represents an emerging strategy for restoring immune tolerance in autoimmune diseases. Tregs are commonly purified using a CD4+CD25+CD127lo/- gating strategy, which yields a mixed population: 1) cells expressing the transcription factors, FOXP3 and Helios, that canonically define lineage stable thymic Tregs and 2) unstable FOXP3+Helios- Tregs. Our prior work identified the autoimmune disease risk-associated locus and costimulatory molecule, CD226, as being highly expressed not only on effector T cells but also, interferon-γ (IFN-γ) producing peripheral Tregs (pTreg). Thus, we sought to determine whether isolating Tregs with a CD4+CD25+CD226- strategy yields a population with increased purity and suppressive capacity relative to CD4+CD25+CD127lo/- cells. After 14d of culture, expanded CD4+CD25+CD226- cells displayed a decreased proportion of pTregs relative to CD4+CD25+CD127lo/- cells, as measured by FOXP3+Helios- expression and the epigenetic signature at the FOXP3 Treg-specific demethylated region (TSDR). Furthermore, CD226- Tregs exhibited decreased production of the effector cytokines, IFN-γ, TNF, and IL-17A, along with increased expression of the immunoregulatory cytokine, TGF-ß1. Lastly, CD226- Tregs demonstrated increased in vitro suppressive capacity as compared to their CD127lo/- counterparts. These data suggest that the exclusion of CD226-expressing cells during Treg sorting yields a population with increased purity, lineage stability, and suppressive capabilities, which may benefit Treg ACT for the treatment of autoimmune diseases.


Subject(s)
Autoimmune Diseases , Forkhead Transcription Factors , Cell- and Tissue-Based Therapy , Cytokines/metabolism , Forkhead Transcription Factors/metabolism , Humans , Interferon-gamma , T-Lymphocytes, Regulatory
7.
J Immunol ; 207(3): 849-859, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34301848

ABSTRACT

A missense mutation (R620W) of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), which encodes lymphoid-tyrosine phosphatase (LYP), confers genetic risk for multiple autoimmune diseases including type 1 diabetes. LYP has been putatively demonstrated to attenuate proximal T and BCR signaling. However, limited data exist regarding PTPN22 expression within primary T cell subsets and the impact of the type 1 diabetes risk variant on human T cell activity. In this study, we demonstrate endogenous PTPN22 is differentially expressed and dynamically controlled following activation. From control subjects homozygous for the nonrisk allele, we observed 2.1- (p < 0.05) and 3.6-fold (p < 0.001) more PTPN22 transcripts in resting CD4+ memory and regulatory T cells (Tregs), respectively, over naive CD4+ T cells, with expression peaking 24 h postactivation. When LYP was overexpressed in conventional CD4+ T cells, TCR signaling and activation were blunted by LYP-620R (p < 0.001) but only modestly affected by the LYP-620W risk variant versus mock-transfected control, with similar results observed in Tregs. LYP overexpression only impacted proliferation following activation by APCs but not anti-CD3- and anti-CD28-coated microbeads, suggesting LYP modulation of pathways other than TCR. Notably, proliferation was significantly lower with LYP-620R than with LYP-620W overexpression in conventional CD4+ T cells but was similar in Treg. These data indicate that the LYP-620W variant is hypomorphic in the context of human CD4+ T cell activation and may have important implications for therapies seeking to restore immunological tolerance in autoimmune disorders.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism , Signaling Lymphocytic Activation Molecule Associated Protein/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Autoimmunity , Cell Differentiation , Cell Proliferation , Cells, Cultured , Gene Expression Regulation , Genetic Variation , Humans , Immune Tolerance , Immunologic Memory , Lymphocyte Activation/genetics , Mutation/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Signaling Lymphocytic Activation Molecule Associated Protein/genetics
8.
JCI Insight ; 6(14)2021 07 22.
Article in English | MEDLINE | ID: mdl-34156979

ABSTRACT

Estrogen-related receptor γ (Esrrg) is a murine lupus susceptibility gene associated with T cell activation. Here, we report that Esrrg controls Tregs through mitochondria homeostasis. Esrrg deficiency impaired the maintenance and function of Tregs, leading to global T cell activation and autoimmunity in aged mice. Further, Esrrg-deficient Tregs presented an impaired differentiation into follicular Tregs that enhanced follicular helper T cells' responses. Mechanistically, Esrrg-deficient Tregs presented with dysregulated mitochondria with decreased oxygen consumption as well as ATP and NAD+ production. In addition, Esrrg-deficient Tregs exhibited decreased phosphatidylinositol and TGF-ß signaling pathways and increased mTOR complex 1 activation. We found that the expression of human ESRRG, which is high in Tregs, was lower in CD4+ T cells from patients with lupus than in healthy controls. Finally, knocking down ESRRG in Jurkat T cells decreased their metabolism. Together, our results reveal a critical role of Esrrg in the maintenance and metabolism of Tregs, which may provide a genetic link between lupus pathogenesis and mitochondrial dysfunction in T cells.


Subject(s)
Lupus Erythematosus, Systemic/genetics , Mitochondria/pathology , Receptors, Estrogen/deficiency , Receptors, Estrogen/genetics , T-Lymphocytes, Regulatory/immunology , Animals , Disease Models, Animal , Female , Gene Knockdown Techniques , Humans , Jurkat Cells , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/immunology , Mice , Mitochondria/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism
9.
Immunol Cell Biol ; 99(5): 496-508, 2021 05.
Article in English | MEDLINE | ID: mdl-33483996

ABSTRACT

The conceptual basis for a genetic predisposition underlying the risk for developing type 1 diabetes (T1D) predates modern human molecular genetics. Over half of the genetic risk has been attributed to the human leukocyte antigen (HLA) class II gene region and to the insulin (INS) gene locus - both thought to confer direction of autoreactivity and tissue specificity. Notwithstanding, questions still remain regarding the functional contributions of a vast array of minor polygenic risk variants scattered throughout the genome that likely influence disease heterogeneity and clinical outcomes. Herein, we summarize the available literature related to the T1D-associated coding variants defined at the time of this review, for the genes PTPN22, IFIH1, SH2B3, CD226, TYK2, FUT2, SIRPG, CTLA4, CTSH and UBASH3A. Data from genotype-selected human cohorts are summarized, and studies from the non-obese diabetic (NOD) mouse are presented to describe the functional impact of these variants in relation to innate and adaptive immunity as well as to ß-cell fragility, with expression profiles in tissues and peripheral blood highlighted. The contribution of each variant to progression through T1D staging, including environmental interactions, are discussed with consideration of how their respective protein products may serve as attractive targets for precision medicine-based therapeutics to prevent or suspend the development of T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Animals , Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease , Genotype , Mice , Mice, Inbred NOD , Polymorphism, Single Nucleotide
10.
Front Immunol ; 11: 611, 2020.
Article in English | MEDLINE | ID: mdl-32351504

ABSTRACT

The human T lymphocyte compartment is highly dynamic over the course of a lifetime. Of the many changes, perhaps most notable is the transition from a predominantly naïve T cell state at birth to the acquisition of antigen-experienced memory and effector subsets following environmental exposures. These phenotypic changes, including the induction of T cell exhaustion and senescence, have the potential to negatively impact efficacy of adoptive T cell therapies (ACT). When considering ACT with CD4+CD25+CD127-/lo regulatory T cells (Tregs) for the induction of immune tolerance, we previously reported ex vivo expanded umbilical cord blood (CB) Tregs remained more naïve, suppressed responder T cells equivalently, and exhibited a more diverse T cell receptor (TCR) repertoire compared to expanded adult peripheral blood (APB) Tregs. Herein, we hypothesized that upon further characterization, we would observe increased lineage heterogeneity and phenotypic diversity in APB Tregs that might negatively impact lineage stability, engraftment capacity, and the potential for Tregs to home to sites of tissue inflammation following ACT. We compared the phenotypic profiles of human Tregs isolated from CB versus the more traditional source, APB. We conducted analysis of fresh and ex vivo expanded Treg subsets at both the single cell (scRNA-seq and flow cytometry) and bulk (microarray and cytokine profiling) levels. Single cell transcriptional profiles of pre-expansion APB Tregs highlighted a cluster of cells that showed increased expression of genes associated with effector and pro-inflammatory phenotypes (CCL5, GZMK, CXCR3, LYAR, and NKG7) with low expression of Treg markers (FOXP3 and IKZF2). CB Tregs were more diverse in TCR repertoire and homogenous in phenotype, and contained fewer effector-like cells in contrast with APB Tregs. Interestingly, expression of canonical Treg markers, such as FOXP3, TIGIT, and IKZF2, were increased in CB CD4+CD127+ conventional T cells (Tconv) compared to APB Tconv, post-expansion, implying perinatal T cells may adopt a default regulatory program. Collectively, these data identify surface markers (namely CXCR3) that could be depleted to improve purity and stability of APB Tregs, and support the use of expanded CB Tregs as a potentially optimal ACT modality for the treatment of autoimmune and inflammatory diseases.


Subject(s)
Fetal Blood/immunology , Immunotherapy, Adoptive , T-Lymphocytes, Regulatory/immunology , Adult , Cell Lineage , Fetal Blood/cytology , Humans , Lymphocyte Activation , Phenotype , RNA-Seq , Receptors, Antigen, T-Cell/immunology
11.
J Autoimmun ; 108: 102417, 2020 03.
Article in English | MEDLINE | ID: mdl-32035746

ABSTRACT

IL-12 and IL-18 synergize to promote TH1 responses and have been implicated as accelerators of autoimmune pathogenesis in type 1 diabetes (T1D). We investigated the influence of these cytokines on immune cells involved in human T1D progression: natural killer (NK) cells, regulatory T cells (Tregs), and cytotoxic T lymphocytes (CTL). NK cells from T1D patients exhibited higher surface CD226 versus controls and lower CD25 compared to first-degree relatives and controls. Changes in NK cell phenotype towards terminal differentiation were associated with cytomegalovirus (CMV) seropositivity, while possession of IL18RAP, IFIH1, and IL2RA T1D-risk variants impacted NK cell activation as evaluated by immuno-expression quantitative trait loci (eQTL) analyses. IL-12 and IL-18 stimulated NK cells from healthy donors exhibited enhanced specific killing of myelogenous K562 target cells. Moreover, activated NK cells increased expression of NKG2A, NKG2D, CD226, TIGIT and CD25, which enabled competition for IL-2 upon co-culture with Tregs, resulting in Treg downregulation of FOXP3, production of IFNγ, and loss of suppressive function. We generated islet-autoreactive CTL "avatars", which upon exposure to IL-12 and IL-18, upregulated IFNγ and Granzyme-B leading to increased lymphocytotoxicity of a human ß-cell line in vitro. These results support a model for T1D pathogenesis wherein IL-12 and IL-18 synergistically enhance CTL and NK cell cytotoxic activity and disrupt immunoregulation by Tregs.


Subject(s)
Immunity, Innate , Inflammation/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Activation/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Adolescent , Adult , Biomarkers , Cells, Cultured , Child , Cytokines/metabolism , Cytotoxicity, Immunologic , Diabetes Mellitus, Type 1/etiology , Diabetes Mellitus, Type 1/metabolism , Disease Susceptibility , Female , Humans , Immunophenotyping , Inflammation/metabolism , Inflammation/pathology , Lymphocyte Count , Male , Middle Aged , Models, Biological , Phenotype , Quantitative Trait Loci , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Young Adult
12.
Mol Ther Methods Clin Dev ; 4: 178-191, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28345003

ABSTRACT

Umbilical cord blood is a traditional and convenient source of cells for hematopoietic stem cell transplantation. Thymic regulatory T cells (Tregs) are also present in cord blood, and there is growing interest in the use of autologous Tregs to provide a low-risk, fully human leukocyte antigen (HLA)-matched cell product for treating autoimmune diseases, such as type 1 diabetes. Here, we describe a good manufacturing practice (GMP)-compatible Treg expansion protocol using fluorescence-activated cell sorting, resulting in a mean 2,092-fold expansion of Tregs over a 16-day culture for a median yield of 1.26 × 109 Tregs from single-donor cryopreserved units. The resulting Tregs passed prior clinical trial release criteria for Treg purity and sterility, including additional rigorous assessments of FOXP3 and Helios expression and epigenetic analysis of the FOXP3 Treg-specific demethylated region (TSDR). Compared with expanded adult peripheral blood Tregs, expanded cord blood Tregs remained more naive, as assessed by continued expression of CD45RA, produced reduced IFN-γ following activation, and effectively inhibited responder T cell proliferation. Immunosequencing of the T cell receptor revealed a remarkably diverse receptor repertoire within cord blood Tregs that was maintained following in vitro expansion. These data support the feasibility of generating GMP-compliant Tregs from cord blood for adoptive cell transfer therapies and highlight potential advantages in terms of safety, phenotypic stability, autoantigen specificity, and tissue distribution.

SELECTION OF CITATIONS
SEARCH DETAIL
...