Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 25(6): 775-786.e5, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29706593

ABSTRACT

Identification of additional uses for existing drugs is a hot topic in drug discovery and a viable alternative to de novo drug development. HAMI3379 is known as an antagonist of the cysteinyl-leukotriene CysLT2 receptor, and was initially developed to treat cardiovascular and inflammatory disorders. In our study we identified HAMI3379 as an antagonist of the orphan G protein-coupled receptor GPR17. HAMI3379 inhibits signaling of recombinant human, rat, and mouse GPR17 across various cellular backgrounds, and of endogenous GPR17 in primary rodent oligodendrocytes. GPR17 blockade by HAMI3379 enhanced maturation of primary rat and mouse oligodendrocytes, but was without effect in oligodendrocytes from GPR17 knockout mice. In human oligodendrocytes prepared from inducible pluripotent stem cells, GPR17 is expressed and its activation impaired oligodendrocyte differentiation. HAMI3379, conversely, efficiently favored human oligodendrocyte differentiation. We propose that HAMI3379 holds promise for pharmacological exploitation of orphan GPR17 to enhance regenerative strategies for the promotion of remyelination in patients.


Subject(s)
Cell Differentiation/drug effects , Cyclohexanecarboxylic Acids/pharmacology , Drug Repositioning , Oligodendroglia/cytology , Oligodendroglia/drug effects , Phthalic Acids/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Cyclohexanecarboxylic Acids/chemistry , Dose-Response Relationship, Drug , Humans , Indoles/chemistry , Indoles/pharmacology , Mice , Mice, Knockout , Molecular Structure , Phthalic Acids/chemistry , Propionates/chemistry , Propionates/pharmacology , Rats , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
2.
Mol Pharmacol ; 91(5): 518-532, 2017 05.
Article in English | MEDLINE | ID: mdl-28254957

ABSTRACT

Pairing orphan G protein­coupled receptors (GPCRs) with their cognate endogenous ligands is expected to have a major impact on our understanding of GPCR biology. It follows that the reproducibility of orphan receptor ligand pairs should be of fundamental importance to guide meaningful investigations into the pharmacology and function of individual receptors. GPR17 is an orphan receptor characterized by some as a dualistic uracil nucleotide/cysteinyl leukotriene receptor and by others as inactive toward these stimuli altogether. Whereas regulation of central nervous system myelination by GPR17 is well established, verification of activity of its putative endogenous ligands has proven elusive so far. Herein we report that uracil nucleotides and cysteinyl leukotrienes do not activate human, mouse, or rat GPR17 in various cellular backgrounds, including primary cells, using eight distinct functional assay platforms based on labelfree pathway-unbiased biosensor technologies, as well as canonical second-messenger or biochemical assays. Appraisal of GPR17 activity can neither be accomplished with co-application of both ligand classes, nor with exogenous transfection of partner receptors (nucleotide P2Y12, cysteinyl-leukotriene CysLT1) to reconstitute the elusive pharmacology. Moreover, our study does not support the inhibition of GPR17 by the marketed antiplatelet drugs cangrelor and ticagrelor, previously suggested to antagonize GPR17. Whereas our data do not disagree with a role of GPR17 per se as an orchestrator of central nervous system functions, they challenge the utility of the proposed (ant)agonists as tools to imply direct contribution of GPR17 in complex biologic settings.


Subject(s)
Cysteine/pharmacology , Leukotrienes/pharmacology , Receptors, G-Protein-Coupled/metabolism , Uracil Nucleotides/pharmacology , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Animals , CHO Cells , Cell Membrane/drug effects , Cell Membrane/metabolism , Cricetinae , Cricetulus , HEK293 Cells , Humans , Ligands , Mice , Nerve Tissue Proteins/metabolism , Rats , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Ticagrelor
3.
Sci Signal ; 6(298): ra93, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24150254

ABSTRACT

Replacement of the lost myelin sheath is a therapeutic goal for treating demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis (MS). The G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) GPR17, which is phylogenetically closely related to receptors of the "purinergic cluster," has emerged as a modulator of CNS myelination. However, whether GPR17-mediated signaling positively or negatively regulates this critical process is unresolved. We identified a small-molecule agonist, MDL29,951, that selectively activated GPR17 even in a complex environment of endogenous purinergic receptors in primary oligodendrocytes. MDL29,951-stimulated GPR17 engaged the entire set of intracellular adaptor proteins for GPCRs: G proteins of the Gα(i), Gα(s), and Gα(q) subfamily, as well as ß-arrestins. This was visualized as alterations in the concentrations of cyclic adenosine monophosphate and inositol phosphate, increased Ca²âº flux, phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), as well as multifeatured cell activation recorded with label-free dynamic mass redistribution and impedance biosensors. MDL29,951 inhibited the maturation of primary oligodendrocytes from heterozygous but not GPR17 knockout mice in culture, as well as in cerebellar slices from 4-day-old wild-type mice. Because GPCRs are attractive targets for therapeutic intervention, inhibiting GPR17 emerges as therapeutic strategy to relieve the oligodendrocyte maturation block and promote myelin repair in MS.


Subject(s)
Receptors, G-Protein-Coupled/agonists , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Animals , Arrestins/metabolism , CHO Cells , COS Cells , Cell Line , Cell Line, Tumor , Cells, Cultured , Chromones/pharmacology , Cricetinae , Cricetulus , HEK293 Cells , Humans , Immunohistochemistry , Indoles/chemistry , Indoles/pharmacology , Mice , Mice, Knockout , Molecular Structure , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Oligodendroglia/cytology , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Propionates/chemistry , Propionates/pharmacology , Rats , Rats, Wistar , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Small Molecule Libraries/chemistry , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , beta-Arrestins
4.
Nat Commun ; 3: 1044, 2012.
Article in English | MEDLINE | ID: mdl-22948826

ABSTRACT

Seven transmembrane helical receptors (7TMRs) modulate cell function via different types of G proteins, often in a ligand-specific manner. Class A 7TMRs harbour allosteric vestibules in the entrance of their ligand-binding cavities, which are in the focus of current drug discovery. However, their biological function remains enigmatic. Here we present a new strategy for probing and manipulating conformational transitions in the allosteric vestibule of label-free 7TMRs using the M(2) acetylcholine receptor as a paradigm. We designed dualsteric agonists as 'tailor-made' chemical probes to trigger graded receptor activation from the acetylcholine-binding site while simultaneously restricting spatial flexibility of the receptor's allosteric vestibule. Our findings reveal for the first time that a 7TMR's allosteric vestibule controls the extent of receptor movement to govern a hierarchical order of G-protein coupling. This is a new concept assigning a biological role to the allosteric vestibule for controlling fidelity of 7TMR signalling.


Subject(s)
GTP-Binding Proteins/metabolism , Receptor, Muscarinic M2/chemistry , Receptors, G-Protein-Coupled/chemistry , Allosteric Site , Humans , Protein Structure, Secondary , Protein Structure, Tertiary , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M2/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
5.
Nat Chem Biol ; 8(7): 631-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22634634

ABSTRACT

Differential targeting of heterotrimeric G protein versus ß-arrestin signaling are emerging concepts in G protein-coupled receptor (GPCR) research and drug discovery, and biased engagement by GPCR ligands of either ß-arrestin or G protein pathways has been disclosed. Herein we report on a new mechanism of ligand bias to titrate the signaling specificity of a cell-surface GPCR. Using a combination of biomolecular and virtual screening, we identified the small-molecule modulator Gue1654, which inhibits Gßγ but not Gα signaling triggered upon activation of Gα(i)-ßγ by the chemoattractant receptor OXE-R in both recombinant and human primary cells. Gue1654 does not interfere nonspecifically with signaling directly at or downstream of Gßγ. This hitherto unappreciated mechanism of ligand bias at a GPCR highlights both a new paradigm for functional selectivity and a potentially new strategy to develop pathway-specific therapeutics.


Subject(s)
Benzeneacetamides/metabolism , Benzothiazoles/metabolism , Biopolymers/metabolism , GTP-Binding Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Calcium/metabolism , Cell Line , Cyclic AMP/metabolism , Humans , Ligands
6.
Nat Protoc ; 6(11): 1748-60, 2011 Oct 20.
Article in English | MEDLINE | ID: mdl-22015845

ABSTRACT

Label-free dynamic mass redistribution (DMR) is a cutting-edge assay technology that enables real-time detection of integrated cellular responses in living cells. It relies on detection of refractive index alterations on biosensor-coated microplates that originate from stimulus-induced changes in the total biomass proximal to the sensor surface. Here we describe a detailed protocol to apply DMR technology to frame functional behavior of G protein-coupled receptors that are traditionally examined with end point assays on the basis of detection of individual second messengers, such as cAMP, Ca(2+) or inositol phosphates. The method can be readily adapted across diverse cellular backgrounds (adherent or suspension), including primary human cells. Real-time recordings can be performed in 384-well microtiter plates and be completed in 2 h, or they can be extended to several hours depending on the biological question to be addressed. The entire procedure, including cell harvesting and DMR detection, takes 1-2 d.


Subject(s)
Biosensing Techniques , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Animals , CHO Cells , Cricetinae , HEK293 Cells , Humans , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...