Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 108(4-2): 045101, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978587

ABSTRACT

Molecular diffusion in bulk liquids proceeds according to Fick's law, which stipulates that the particle current is proportional to the conductive area. This constrains the efficiency of filtration systems in which both selectivity and permeability are valued. Previous studies have demonstrated that interactions between the diffusing species and solid boundaries can enhance or reduce particle transport relative to bulk conditions. However, only cases that preserve the monotonic relationship between particle current and conductive area are known. In this paper, we expose a system in which the diffusive current increases when the conductive area diminishes. These examples are based on the century-old theory of a charged particle interacting with an electrical double layer. This surprising discovery could improve the efficiency of filtration and may advance our understanding of biological pore structures.

2.
J Plant Physiol ; 290: 154099, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37776572

ABSTRACT

It was recently suggested to end the usage of the term cell wall in microbiology (including prokaryotes and fungi) because it represented an inappropriate and potentially misleading metaphor (Casadevall and Gow, 2022). The analysis of the arguments for such a move from the viewpoint of the plant physiologist indicates that the suggestion is based on misunderstandings, first, of the early history of cell biology and its terminology; second, of the development of modern concepts of cell wall function since the late 19th century; and third, of the nature of metaphors and their role in scientific communication. We conclude that misconceptions concerning cell walls may arise due to pedagogical shortcomings in introducing students to our technical terminology rather than from the fact that part of this terminology originated from metaphors.


Subject(s)
Cell Biology , Cell Wall , Metaphor , Terminology as Topic
3.
Nat Plants ; 9(6): 877-882, 2023 06.
Article in English | MEDLINE | ID: mdl-37188852

ABSTRACT

A micro-cantilever technique applied to individual leaf epidermis cells of intact Arabidopsis thaliana and Nicotiana tabacum synthesizing genetically encoded calcium indicators (R-GECO1 and GCaMP3) revealed that compressive forces induced local calcium peaks that preceded delayed, slowly moving calcium waves. Releasing the force evoked significantly faster calcium waves. Slow waves were also triggered by increased turgor and fast waves by turgor drops in pressure probe tests. The distinct characteristics of the wave types suggest different underlying mechanisms and an ability of plants to distinguish touch from letting go.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Touch , Calcium , Plant Leaves
4.
J Plant Physiol ; 272: 153672, 2022 May.
Article in English | MEDLINE | ID: mdl-35366573

ABSTRACT

Long-distance transport of photoassimilates in the phloem of vascular plants occurs as bulk flow in sieve tubes. These tubes are arrays of cells that lose nuclei, cytoskeleton, and some organelles when they differentiate into mature sieve elements. Symplasmic continuity is achieved by perforations that turn the cell walls between adjoining sieve elements into sieve plates. These structural features are interpreted as adaptations that reduce the resistance sieve tubes offer to cytoplasmic bulk flow. According to the common reading of Ernst Münch's pressure-flow theory, the driving forces for these flows are osmotically generated gradients of hydrostatic pressure along the sieve tubes. However, the significance of pressure gradients in the flow direction has also been questioned. Münch himself stated that no detectable pressure gradients existed between the linked osmotic cells that he used to demonstrate the validity of his ideas, and the earliest explanation of osmotically driven flows by Wilhelm Pfeffer, on which Münch based his theory, explicitly claimed the absence of pressure gradients. To resolve the apparent contradiction, we here reconstruct the history of the idea that osmotically driven transport processes in organisms necessarily require steps or gradients of hydrostatic pressure along the transport route. Our analysis leads us to conclude that some defects of overly simplifying interpretations of Münch's ideas (such as the sieve plate fallacy) could be avoided if our descriptions of his theory in textbooks and the scientific literature would follow the logics of the theory's earliest formulations more closely.


Subject(s)
Cell Wall , Phloem , Biological Transport , Osmotic Pressure , Water
5.
Plant J ; 110(3): 707-719, 2022 05.
Article in English | MEDLINE | ID: mdl-35124855

ABSTRACT

In most plant tissues, threads of cytoplasm, or plasmodesmata, connect the protoplasts via pores in the cell walls. This enables symplasmic transport, for instance in phloem loading, transport and unloading. Importantly, the geometry of the wall pore limits the size of the particles that may be transported, and also (co-)defines plasmodesmal resistance to diffusion and convective flow. However, quantitative information on transport through plasmodesmata in non-cylindrical cell wall pores is scarce. We have found conical, funnel-shaped cell wall pores in the phloem-unloading zone in growing root tips of five eudicot and two monocot species, specifically between protophloem sieve elements and phloem pole pericycle cells. 3D reconstructions by electron tomography suggested that funnel plasmodesmata possess a desmotubule but lack tethers to fix it in a central position. Model calculations showed that both diffusive and hydraulic resistance decrease drastically in conical and trumpet-shaped cell wall pores compared with cylindrical channels, even at very small opening angles. Notably, the effect on hydraulic resistance was relatively larger. We conclude that funnel plasmodesmata generally are present in specific cell-cell interfaces in angiosperm roots, where they appear to facilitate symplasmic phloem unloading. Interestingly, cytosolic sleeves of most plasmodesmata reported in the literature do not resemble annuli of constant diameter but possess variously shaped widenings. Our evaluations suggest that widenings too small for unambiguous identification on electron micrographs may drastically reduce the hydraulic and diffusional resistance of these pores. Consequently, theoretical models assuming cylindrical symmetries will underestimate plasmodesmal conductivities.


Subject(s)
Magnoliopsida , Plasmodesmata , Biological Transport , Phloem , Plant Roots , Plasmodesmata/metabolism
6.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34983847

ABSTRACT

Symplasmicly connected cells called sieve elements form a network of tubes in the phloem of vascular plants. Sieve elements have essential functions as they provide routes for photoassimilate distribution, the exchange of developmental signals, and the coordination of defense responses. Nonetheless, they are the least understood main type of plant cells. They are extremely sensitive, possess a reduced endomembrane system without Golgi apparatus, and lack nuclei and translation machineries, so that transcriptomics and similar techniques cannot be applied. Moreover, the analysis of phloem exudates as a proxy for sieve element composition is marred by methodological problems. We developed a simple protocol for the isolation of sieve elements from leaves and stems of Nicotiana tabacum at sufficient amounts for large-scale proteome analysis. By quantifying the enrichment of individual proteins in purified sieve element relative to bulk phloem preparations, proteins of increased likelyhood to function specifically in sieve elements were identified. To evaluate the validity of this approach, yellow fluorescent protein constructs of genes encoding three of the candidate proteins were expressed in plants. Tagged proteins occurred exclusively in sieve elements. Two of them, a putative cytochrome b561/ferric reductase and a reticulon-like protein, appeared restricted to segments of the endoplasmic reticulum (ER) that were inaccessible to green fluorescent protein dissolved in the ER lumen, suggesting a previously unknown differentiation of the endomembrane system in sieve elements. Evidently, our list of promising candidate proteins ( SI Appendix, Table S1) provides a valuable exploratory tool for sieve element biology.


Subject(s)
Endoplasmic Reticulum/metabolism , Nicotiana/metabolism , Plant Cells/metabolism , Plant Leaves/metabolism , Plant Stems/metabolism , Plants, Genetically Modified/metabolism , Proteomics , Endoplasmic Reticulum/genetics , Plant Leaves/cytology , Plant Leaves/genetics , Plant Stems/cytology , Plant Stems/genetics , Plants, Genetically Modified/cytology , Plants, Genetically Modified/genetics , Nicotiana/cytology , Nicotiana/genetics
7.
J Plant Physiol ; 257: 153341, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33388666

ABSTRACT

Plant tissues exhibit a symplasmic organization; the individual protoplasts are connected to their neighbors via cytoplasmic bridges that extend through pores in the cell walls. These bridges may have diameters of a micrometer or more, as in the sieve pores of the phloem, but in most cell types they are smaller. Historically, botanists referred to cytoplasmic bridges of all sizes as plasmodesmata. The meaning of the term began to shift when the transmission electron microscope (TEM) became the preferred tool for studying these structures. Today, a plasmodesma is widely understood to be a 'nano-scale' pore. Unfortunately, our understanding of these nanoscopic channels suffers from methodological limitations. This is exemplified by the fact that state-of-the-art EM techniques appear to reveal plasmodesmal pore structures that are much smaller than the tracer molecules known to diffuse through these pores. In general, transport processes in pores that have dimensions in the size range of the transported molecules are governed by different physical parameters than transport process in the macroscopic realm. This can lead to unexpected effects, as experience in nanofluidic technologies demonstrates. Our discussion of problems of size in plasmodesma research leads us to conclude that the field will benefit from technomimetic reasoning - the utilization of concepts developed in applied nanofluidics for the interpretation of biological systems.


Subject(s)
Plasmodesmata/metabolism , Biological Transport , Phloem/metabolism , Terminology as Topic
8.
Plant Cell Physiol ; 61(10): 1699-1710, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33035344

ABSTRACT

Forisomes are protein bodies known exclusively from sieve elements of legumes. Forisomes contribute to the regulation of phloem transport due to their unique Ca2+-controlled, reversible swelling. The assembly of forisomes from sieve element occlusion (SEO) protein monomers in developing sieve elements and the mechanism(s) of Ca2+-dependent forisome contractility are poorly understood because the amino acid sequences of SEO proteins lack conventional protein-protein interaction and Ca2+-binding motifs. We selected amino acids potentially responsible for forisome-specific functions by analyzing SEO protein sequences in comparison to those of the widely distributed SEO-related (SEOR), or SEOR proteins. SEOR proteins resemble SEO proteins closely but lack any Ca2+ responsiveness. We exchanged identified candidate residues by directed mutagenesis of the Medicago truncatula SEO1 gene, expressed the mutated genes in yeast (Saccharomyces cerevisiae) and studied the structural and functional phenotypes of the forisome-like bodies that formed in the transgenic cells. We identified three aspartate residues critical for Ca2+ responsiveness and two more that were required for forisome-like bodies to assemble. The phenotypes observed further suggested that Ca2+-controlled and pH-inducible swelling effects in forisome-like bodies proceeded by different yet interacting mechanisms. Finally, we observed a previously unknown surface striation in native forisomes and in recombinant forisome-like bodies that could serve as an indicator of successful forisome assembly. To conclude, this study defines a promising path to the elucidation of the so-far elusive molecular mechanisms of forisome assembly and Ca2+-dependent contractility.


Subject(s)
Aspartic Acid/metabolism , Calcium/metabolism , Phloem/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Medicago truncatula/genetics , Medicago truncatula/metabolism , Mutagenesis, Site-Directed , Organisms, Genetically Modified , Plant Proteins/genetics , Plant Proteins/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Alignment
9.
Curr Zool ; 66(1): 57-62, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32467705

ABSTRACT

The effects of the variability of individual prey locomotory performance on the vulnerability to predation are poorly understood, partly because individual performance is difficult to determine in natural habitats. To gain insights into the role(s) of individual variation in predatory relationships, we study a convenient model system, the neotropical sandy beach gastropod Olivella semistriata and its main predator, the carnivorous snail Agaronia propatula. The largest size class of O. semistriata is known to be missing from A. propatula's spectrum of subdued prey, although the predator regularly captures much larger individuals of other taxa. To resolve this conundrum, we analyzed predation attempts in the wild. While A. propatula attacked O. semistriata of all sizes, large prey specimens usually escaped by 'sculling', an accelerated, stepping mode of locomotion. Olivella semistriata performed sculling locomotion regardless of size, but sculling velocities determined in the natural environment increased strongly with size. Thus, growth in size as such does not establish a prey size refuge in which O. semistriata is safe from predation. Rather, a behaviorally mediated size refuge is created through the size-dependence of sculling performance. Taken together, this work presents a rare quantitative characterization in the natural habitat of the causal sequence from the size-dependence of individual performance, to the prey size-dependent outcome of predation attempts, to the size bias in the predator's prey spectrum.

10.
Plant J ; 102(4): 797-808, 2020 05.
Article in English | MEDLINE | ID: mdl-31883138

ABSTRACT

Thick glistening cell walls occur in sieve tubes of all major land plant taxa. Historically, these 'nacreous walls' have been considered a diagnostic feature of sieve elements; they represent a conundrum, though, in the context of the widely accepted pressure-flow theory as they severely constrict sieve tubes. We employed the cucurbit Gerrardanthus macrorhizus as a model to study nacreous walls in sieve elements by standard and in situ confocal microscopy and electron microscopy, focusing on changes in functional sieve tubes that occur when prepared for microscopic observation. Over 90% of sieve elements in tissue sections processed for microscopy by standard methods exhibit nacreous walls. Sieve elements in whole, live plants that were actively transporting as shown by phloem-mobile tracers, lacked nacreous walls and exhibited open lumina of circular cross-sections instead, an appropriate structure for Münch-type mass flow of the cell contents. Puncturing of transporting sieve elements with micropipettes triggered the rapid (<1 min) development of nacreous walls that occluded the cell lumen almost completely. We conclude that nacreous walls are preparation artefacts rather than structural features of transporting sieve elements. Nacreous walls in land plants resemble the reversibly swellable walls found in various algae, suggesting that they may function in turgor buffering, the amelioration of osmotic stress, wounding-induced sieve tube occlusion, and possibly local defence responses of the phloem.


Subject(s)
Cucurbitaceae/growth & development , Biological Transport , Cell Wall/physiology , Cell Wall/ultrastructure , Cucurbitaceae/physiology , Cucurbitaceae/ultrastructure , Microscopy, Confocal , Microscopy, Electron , Osmotic Pressure , Phloem/growth & development , Phloem/physiology , Phloem/ultrastructure
11.
J Plant Physiol ; 244: 153060, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31765880

ABSTRACT

The microinjection of fluorescent probes into live cells is an essential component in the toolbox of modern cell biology. Microinjection techniques include the penetration of the plasma membrane and, if present, the cell wall with micropipettes, and the application of pressure or electrical currents to drive the micropipette contents into the cell. These procedures interfere with cellular functions and therefore may induce artifacts. We designed the diffusive injection micropipette (DIMP) that avoids most of the possible artifacts due to the drastically reduced volume of its fluid contents and the utilization of diffusion for cargo delivery into the target cell. DIMPs were successfully tested in plant, fungal, and animal cells. Using the continuity of cytoplasmic dynamics over ten minutes after impalement of Nicotiana trichome cells as a criterion for non-invasiveness, we found DIMPs significantly less disruptive than conventional pressure microinjection. The design of DIMPs abolishes major sources of artifacts that cannot be avoided by other microinjection techniques. Moreover, DIMPs are inexpensive, easy to produce, and can be applied without specific equipment other than a micromanipulator. With these features, DIMPs may become the tool of choice for studies that require the least invasive delivery possible of materials into live cells.


Subject(s)
Aspergillus niger , Fluorescent Dyes/chemistry , Microinjections/methods , Nicotiana , Cell Line , Humans , Microinjections/instrumentation
12.
PeerJ ; 6: e4714, 2018.
Article in English | MEDLINE | ID: mdl-29736346

ABSTRACT

Olivid gastropods of the genus Agaronia are dominant predators within invertebrate communities on sandy beaches throughout Pacific Central America. At Playa Grande, on the Pacific Coast of Costa Rica, we observed 327 natural predation events by Agaronia propatula. For each predation event, we documented prey taxa and body size of both predator and prey. The relationship between predator and prey size differed for each of the four main prey taxa: bivalves, crustaceans, heterospecific gastropods, and conspecific gastropods (representing cannibalism). For bivalve prey, there was increased variance in prey size with increasing predator size. Crustaceans were likely subdued only if injured or otherwise incapacitated. Heterospecific gastropods (mostly Olivella semistriata) constituted half of all prey items, but were only captured by small and intermediately sized A. propatula. Large O. semistriata appeared capable of avoiding predation by A. propatula. Cannibalism was more prevalent among large A. propatula than previously estimated. Our findings suggested ontogenetic niche shifts in A. propatula and a significant role of cannibalism in its population dynamics. Also indicated were size-dependent defensive behavior in some prey taxa and a dynamic, fine-scale zonation of the beach. The unexpected complexity of the trophic relations of A. propatula was only revealed though analysis of individual predation events. This highlights the need for detailed investigations into the trophic ecology of marine invertebrates to understand the factors driving ecosystem structuring in sandy beaches.

13.
PeerJ ; 6: e4665, 2018.
Article in English | MEDLINE | ID: mdl-29682428

ABSTRACT

Differentiating sieve elements in the phloem of angiosperms produce abundant phloem-specific proteins before their protein synthesis machinery is degraded. These P-proteins initially form dense bodies, which disperse into individual filaments when the sieve element matures. In some cases, however, the dense protein agglomerations remain intact and are visible in functional sieve tubes as non-dispersive P-protein bodies, or NPBs. Species exhibiting NPBs are distributed across the entire angiosperm clade. We found that NPBs in the model tree, Populus trichocarpa, resemble the protein bodies described from other species of the order Malpighiales as they all consist of coaligned tubular fibrils bundled in hexagonal symmetry. NPBs of all Malpighiales tested proved unresponsive to sieve tube wounding and Ca2+. The P. trichocarpa NPBs consisted of a protein encoded by a gene that in the genome database of this species had been annotated as a homolog of SEOR1 (sieve element occlusion-related 1) in Arabidopsis. Sequencing of the gene in our plants corroborated this interpretation, and we named the gene PtSEOR1. Previously characterized SEOR proteins form irregular masses of P-protein slime in functional sieve tubes. We conclude that a subgroup of these proteins is involved in the formation of NPBs at least in the Malpighiales, and that these protein bodies have no role in rapid wound responses of the sieve tube network.

14.
Curr Opin Plant Biol ; 43: 43-49, 2018 06.
Article in English | MEDLINE | ID: mdl-29306743

ABSTRACT

Sieve elements (SEs) degrade selected organelles and cytoplasmic structures when they differentiate. According to classical investigations, only smooth ER, mitochondria, sieve element plastids, and, in most cases, P-proteins remain in mature SEs. More recent proteomics and immuno-histochemical studies, however, suggested that additional components including a protein-synthesizing machinery and a fully developed actin cytoskeleton operate in mature SEs. These interpretations are at odds with conventional imaging studies. Here we discuss potential causes for these discrepancies, concluding that differentiating SEs may play a role by 'contaminating' phloem exudates.


Subject(s)
Arabidopsis/metabolism , Phloem/metabolism , Actin Cytoskeleton/ultrastructure , Arabidopsis/cytology , Cell Differentiation , Phloem/cytology
15.
J Integr Plant Biol ; 59(5): 292-310, 2017 May.
Article in English | MEDLINE | ID: mdl-28276639

ABSTRACT

In the 1920s, the German forestry scientist Ernst Münch postulated that photo-assimilate transport is a mass flow driven by osmotically induced pressure gradients between source organs (high turgor) and sink organs (lower turgor). Two crucial components of Münch's hypothesis, the translocation by mass flow from sources to sinks and the osmotic mechanism of pressure flow, were established notions at the time, but had been developed by two institutionally separated groups of scholars. A conceptual separation of whole-plant biology from cellular physiology had followed the institutional separation of forestry science from botany in German-speaking central Europe during the so-called Humboldtian reforms, and was reinforced by the delayed institutionalization of plant physiology as an academic discipline. Münch did not invent a novel concept, but accomplished an integration of the organism-focused and the cell-focused research traditions, reducing the polarization that had evolved when research universities emerged in central Europe. Post-Münch debates about the validity of his hypothesis focused increasingly on the suitability of available research methodologies, especially the electron microscope and the proper interpretation of the results it produced. The present work reconstructs the influence of the dynamic scientific and non-scientific context on the history of the Münch hypothesis.


Subject(s)
Models, Theoretical , Biological Transport/physiology , Plant Physiological Phenomena
16.
Plant Cell Environ ; 39(8): 1727-36, 2016 08.
Article in English | MEDLINE | ID: mdl-26991892

ABSTRACT

Kelps, brown algae (Phaeophyceae) of the order Laminariales, possess sieve tubes for the symplasmic long-distance transport of photoassimilates that are evolutionarily unrelated but structurally similar to the tubes in the phloem of vascular plants. We visualized sieve tube structure and wound responses in fully functional, intact Bull Kelp (Nereocystis luetkeana [K. Mertens] Postels & Ruprecht 1840). In injured tubes, apparent slime plugs formed but were unlikely to cause sieve tube occlusion as they assembled at the downstream side of sieve plates. Cell walls expanded massively in the radial direction, reducing the volume of the wounded sieve elements by up to 90%. Ultrastructural examination showed that a layer of the immediate cell wall characterized by circumferential cellulose fibrils was responsible for swelling and suggested that alginates, abundant gelatinous polymers of the cell wall matrix, were involved. Wall swelling was rapid, reversible and depended on intracellular pressure, as demonstrated by pressure-injection of silicon oil. Our results revive the concept of turgor generation and buffering by swelling cell walls, which had fallen into oblivion over the last century. Because sieve tube transport is pressure-driven and controlled physically by tube diameter, a regulatory role of wall swelling in photoassimilate distribution is implied in kelps.


Subject(s)
Cell Wall/physiology , Kelp/physiology , Water/physiology , Cell Wall/ultrastructure , Kelp/ultrastructure
17.
Ann Bot ; 117(4): 599-606, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26929203

ABSTRACT

BACKGROUND AND AIMS: In vascular plants, important questions regarding phloem function remain unanswered due to problems with invasive experimental procedures in this highly sensitive tissue. Certain brown algae (kelps; Laminariales) also possess sieve tubes for photoassimilate transport, but these are embedded in large volumes of a gelatinous extracellular matrix which isolates them from neighbouring cells. Therefore, we hypothesized that kelp sieve tubes might tolerate invasive experimentation better than their analogues in higher plants, and sought to establish Nereocystis luetkeana as an experimental system. METHODS: The predominant localization of cellulose and the gelatinous extracellular matrix in N. luetkeana was verified using specific fluorescent markers and confocal laser scanning microscopy. Sieve tubes in intact specimens were loaded with fluorescent dyes, either passively (carboxyfluorescein diacetate; CFDA) or by microinjection (rhodamine B), and the movement of the dyes was monitored by fluorescence microscopy. KEY RESULTS: Application of CFDA demonstrated source to sink bulk flow in N. luetkeana sieve tubes, and revealed the complexity of sieve tube structure, with branches, junctions and lateral connections. Microinjection into sieve elements proved comparatively easy. Pulsed rhodamine B injection enabled the determination of flow velocity in individual sieve elements, and the direct visualization of pressure-induced reversals of flow direction across sieve plates. CONCLUSIONS: The reversal of flow direction across sieve plates by pressurizing the downstream sieve element conclusively demonstrates that a critical requirement of the Münch theory is satisfied in kelp; no such evidence exists for tracheophytes. Because of the high tolerance of its sieve elements to experimental manipulation, N. luetkeana is a promising alternative to vascular plants for studying the fluid mechanics of sieve tube networks.


Subject(s)
Extracellular Matrix/metabolism , Kelp/metabolism , Phloem/metabolism , Pressure , Rheology , Biological Transport
18.
Plant Cell Environ ; 39(4): 707-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26709710

Subject(s)
Phloem , Plant Proteins
19.
J Exp Bot ; 65(7): 1879-93, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24591057

ABSTRACT

The phloem provides a network of sieve tubes for long-distance translocation of photosynthates. For over a century, structural proteins in sieve tubes have presented a conundrum since they presumably increase the hydraulic resistance of the tubes while no potential function other than sieve tube or wound sealing in the case of injury has been suggested. Here we summarize and critically evaluate current speculations regarding the roles of these proteins. Our understanding suffers from the suggestive power of images; what looks like a sieve tube plug on micrographs may not actually impede translocation very much. Recent reports of an involvement of SEOR (sieve element occlusion-related) proteins, a class of P-proteins, in the sealing of injured sieve tubes are inconclusive; various lines of evidence suggest that, in neither intact nor injured plants, are SEORs determinative of translocation stoppage. Similarly, the popular notion that P-proteins serve in the defence against phloem sap-feeding insects is unsupported by empirical facts; it is conceivable that in functional sieve tubes, aphids actually could benefit from inducing a plug. The idea that rising cytosolic Ca(2+) generally triggers sieve tube blockage by P-proteins appears widely accepted, despite lacking experimental support. Even in forisomes, P-protein assemblages restricted to one single plant family and the only Ca(2+)-responsive P-proteins known, the available evidence does not unequivocally suggest that plug formation is the cause rather than a consequence of translocation stoppage. We conclude that the physiological roles of structural P-proteins remain elusive, and that in vivo studies of their dynamics in continuous sieve tube networks combined with flow velocity measurements will be required to (hopefully) resolve this scientific roadblock.


Subject(s)
Aphids/physiology , Phloem/physiology , Plant Physiological Phenomena , Plant Proteins/genetics , Plants/genetics , Animals , Feeding Behavior , Plant Proteins/metabolism
20.
Photosynth Res ; 117(1-3): 189-96, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23754670

ABSTRACT

The storage of light energy in chemical form through photosynthesis is the key process underlying life as we know it. To utilize photosynthates efficiently as structural materials or as fuel to drive endergonic processes, they have to be transported from where they are produced to where they are needed. In this primer, we provide an overview of basic biophysical concepts underlying our current understanding of the mechanisms of photosynthate long-distance transport, and briefly discuss current developments in the field.


Subject(s)
Photosynthesis , Plants/metabolism , Biological Transport , Models, Biological , Plants/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...