Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
J Exp Biol ; 225(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-34913467

ABSTRACT

Physiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated whether genetic variants in haemoglobin (Hb) that contribute to high-altitude adaptation in deer mice (Peromyscus maniculatus) are associated with evolved changes in the control of breathing. We created F2 inter-population hybrids of highland and lowland deer mice to test for phenotypic associations of α- and ß-globin variants on a mixed genetic background. Hb genotype had expected effects on Hb-O2 affinity that were associated with differences in arterial O2 saturation in hypoxia. However, high-altitude genotypes were also associated with breathing phenotypes that should contribute to enhancing O2 uptake in hypoxia. Mice with highland α-globin exhibited a more effective breathing pattern, with highland homozygotes breathing deeper but less frequently across a range of inspired O2, and this difference was comparable to the evolved changes in breathing pattern in deer mouse populations native to high altitude. The ventilatory response to hypoxia was augmented in mice that were homozygous for highland ß-globin. The association of globin variants with variation in breathing phenotypes could not be recapitulated by acute manipulation of Hb-O2 affinity, because treatment with efaproxiral (a synthetic drug that acutely reduces Hb-O2 affinity) had no effect on breathing in normoxia or hypoxia. Therefore, adaptive variation in Hb may have unexpected effects on physiology in addition to the canonical function of this protein in circulatory O2 transport.


Subject(s)
Altitude , Peromyscus , Animals , Genetic Variation , Hemoglobins/genetics , Hypoxia/genetics , Mice , Oxygen/metabolism , Peromyscus/genetics , Respiration
3.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R869-R878, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34704846

ABSTRACT

In the developing embryos of egg-laying vertebrates, O2 flux takes place across a fixed surface area of the eggshell and the chorioallantoic membrane. In the case of crocodilians, the developing embryo may experience a decrease in O2 flux when the nest becomes hypoxic, which may cause compensatory adjustments in blood O2 transport. However, whether the switch from embryonic to adult hemoglobin isoforms (isoHbs) plays some role in these adjustments is unknown. Here, we provide a detailed characterization of the developmental switch of isoHb synthesis in the American alligator, Alligator mississippiensis. We examined the in vitro functional properties and subunit composition of purified alligator isoHbs expressed during embryonic developmental stages in normoxia and hypoxia (10% O2). We found distinct patterns of isoHb expression in alligator embryos at different stages of development, but these patterns were not affected by hypoxia. Specifically, alligator embryos expressed two main isoHbs: HbI, prevalent at early developmental stages, with a high O2 affinity and high ATP sensitivity, and HbII, prevalent at later stages and identical to the adult protein, with a low O2 affinity and high CO2 sensitivity. These results indicate that whole blood O2 affinity is mainly regulated by ATP in the early embryo and by CO2 and bicarbonate from the late embryo until adult life, but the developmental regulation of isoHb expression is not affected by hypoxia exposure.


Subject(s)
Alligators and Crocodiles/embryology , Embryo, Nonmammalian/metabolism , Hemoglobins/metabolism , Reptilian Proteins/metabolism , Adenosine Triphosphate/blood , Animals , Carbon Dioxide/blood , Embryonic Development , Oxygen/blood , Protein Isoforms
4.
Biochemistry ; 58(29): 3212-3223, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31257865

ABSTRACT

Cytoglobin is a heme protein evolutionarily related to hemoglobin and myoglobin. Cytoglobin is expressed ubiquitously in mammalian tissues; however, its physiological functions are yet unclear. Phylogenetic analyses indicate that the cytoglobin gene is highly conserved in vertebrate clades, from fish to reptiles, amphibians, birds, and mammals. Most proposed roles for cytoglobin require the maintenance of a pool of reduced cytoglobin (FeII). We have shown previously that the human cytochrome b5/cytochrome b5 reductase system, considered a quintessential hemoglobin/myoglobin reductant, can reduce human and zebrafish cytoglobins ≤250-fold faster than human hemoglobin or myoglobin. It was unclear whether this reduction of zebrafish cytoglobins by mammalian proteins indicates a conserved pathway through vertebrate evolution. Here, we report the reduction of zebrafish cytoglobins 1 and 2 by the zebrafish cytochrome b5 reductase and the two zebrafish cytochrome b5 isoforms. In addition, the reducing system also supports reduction of Globin X, a conserved globin in fish and amphibians. Indeed, the zebrafish reducing system can maintain a fully reduced pool for both cytoglobins, and both cytochrome b5 isoforms can support this process. We determined the P50 for oxygen to be 0.5 Torr for cytoglobin 1 and 4.4 Torr for cytoglobin 2 at 25 °C. Thus, even at low oxygen tensions, the reduced cytoglobins may exist in a predominant oxygen-bound form. Under these conditions, the cytochrome b5/cytochrome b5 reductase system can support a conserved role for cytoglobins through evolution, providing electrons for redox signaling reactions such as nitric oxide dioxygenation, nitrite reduction, and phospholipid oxidation.


Subject(s)
Biological Evolution , Cytochrome-B(5) Reductase/metabolism , Cytochromes b5/metabolism , Cytoglobin/metabolism , NAD/metabolism , Amino Acid Sequence , Animals , Cytochrome-B(5) Reductase/genetics , Cytochromes b5/genetics , Cytoglobin/genetics , Enzyme Activation/physiology , NAD/genetics , Protein Binding/physiology , Zebrafish
5.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 283-291, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29155105

ABSTRACT

Agnathans have a globin repertoire that markedly differs from that of jawed (gnathostome) vertebrates. The sea lamprey (Petromyzon marinus) harbors at least 18 hemoglobin, two myoglobin, two globin X, and one cytoglobin genes. However, agnathan hemoglobins and myoglobins are not orthologous to their cognates in jawed vertebrates. Thus, blood-based O2 transport and muscle-based O2 storage proteins emerged twice in vertebrates from a tissue-globin ancestor. Notably, the sea lamprey displays three switches in hemoglobin expression in its life cycle, analogous to hemoglobin switching in vertebrates. To study the functional changes associated with the evolution and ontogenesis of distinct globin types, we determined O2 binding equilibria, type of quaternary assembly, and nitrite reductase enzymatic activities of one adult (aHb5a) and one embryonic/larval hemoglobin (aHb6), myoglobin (aMb1) and cytoglobin (Cygb) of the sea lamprey. We found clear functional differentiation among globin types expressed at different developmental stages and in different tissues. Cygb and aMb1 have high O2 affinity and nitrite reductase activity, while the two hemoglobins display low O2 affinity and nitrite reductase activity. Cygb and aHb6 but not aHb5a show cooperative O2 binding, correlating with increased stability of dimers, as shown by gel filtration and molecular modeling. The high O2-affinity and the lack of cooperativity confirm the identity of the sea lamprey aMb1 as O2 storage protein of the muscle. The dimeric structure and O2-binding properties of sea lamprey and mammalian Cygb were very similar, suggesting a conservation of function since their divergence around 500million years ago.


Subject(s)
Evolution, Molecular , Fish Proteins/genetics , Globins/genetics , Lampreys/genetics , Phylogeny , Animals
6.
Article in English | MEDLINE | ID: mdl-27993597

ABSTRACT

The ability of marine mammals to hunt prey at depth is known to rely on enhanced oxygen stores and on selective distribution of blood flow, but the molecular mechanisms regulating blood flow and oxygen transport remain unresolved. To investigate the molecular mechanisms that may be important in regulating blood flow, we measured concentration of nitrite and S-nitrosothiols (SNO), two metabolites of the vasodilator nitric oxide (NO), in the blood of 5 species of marine mammals differing in their dive duration: bottlenose dolphin, South American sea lion, harbor seal, walrus and beluga whale. We also examined oxygen affinity, sensitivity to 2,3-diphosphoglycerate (DPG) and nitrite reductase activity of the hemoglobin (Hb) to search for possible adaptive variations in these functional properties. We found levels of plasma and red blood cells nitrite similar to those reported for terrestrial mammals, but unusually high concentrations of red blood cell SNO in bottlenose dolphin, walrus and beluga whale, suggesting enhanced SNO-dependent signaling in these species. Purified Hbs showed similar functional properties in terms of oxygen affinity and sensitivity to DPG, indicating that reported large variations in blood oxygen affinity among diving mammals likely derive from phenotypic variations in red blood cell DPG levels. The nitrite reductase activities of the Hbs were overall slightly higher than that of human Hb, with the Hb of beluga whale, capable of longest dives, having the highest activity. Taken together, these results underscore adaptive variations in circulatory NO metabolism in diving mammals but not in the oxygenation properties of the Hb.


Subject(s)
Beluga Whale/blood , Beluga Whale/physiology , Caniformia/blood , Caniformia/physiology , Diving/physiology , Animals , Dolphins/blood , Dolphins/physiology , Erythrocytes/metabolism , Hemoglobins/metabolism , Nitric Oxide/blood , Sea Lions/blood , Sea Lions/physiology , Seals, Earless/blood , Seals, Earless/physiology , Species Specificity , Walruses/blood , Walruses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...