Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 421: 229-43, 2008.
Article in English | MEDLINE | ID: mdl-18826058

ABSTRACT

The use of affinity tags and especially histidine tags (His-tags) has become widespread in molecular biology for the efficient purification of recombinant proteins. In some cases, the presence of the affinity tag in the recombinant protein is unwanted or may represent a disadvantage for the projected use of the protein, like in clinical, functional or structural studies. For N-terminal tags, the TAGZyme system represents an ideal approach for fast and accurate tag removal. TAGZyme is based on engineered aminopeptidases. Using human tumor necrosis factor alpha as a model protein, we describe here the steps involved in the removal of a His-tag using TAGZyme. The tag used (UZ-HT15) has been optimized for expression in Escherichia coli and for TAGZyme efficiency. The UZ-HT15 tag and the method can be applied to virtually any protein. A description of the cloning strategy for the design of the genetic construction, two alternative approaches and a simple test to assess the performance of the tag removal process are also included.


Subject(s)
Enzymes/chemistry , Histidine/chemistry , Amino Acid Sequence , Base Sequence , DNA Primers , Molecular Sequence Data
2.
Nucleic Acids Res ; 31(6): 1665-72, 2003 Mar 15.
Article in English | MEDLINE | ID: mdl-12626708

ABSTRACT

In mammals four deoxyribonucleoside kinases, with a relatively restricted specificity, catalyze the phosphorylation of the four natural deoxyribonucleosides. When cultured mosquito cells, originating from the malaria vector Anopheles gambiae, were examined for deoxyribonucleoside kinase activities, only a single enzyme was isolated. Subsequently, the corresponding gene was cloned and over-expressed. While the mosquito kinase (Ag-dNK) phosphorylated all four natural deoxyribonucleosides, it displayed an unexpectedly higher relative efficiency for the phosphorylation of purine versus pyrimidine deoxyribonucleosides than the fruit fly multisubstrate deoxyribonucleoside kinase (EC 2.7.1.145). In addition, Ag-dNK could also phosphorylate some medically interesting nucleoside analogs, like stavudine (D4T), 2-chloro-deoxyadenosine (CdA) and 5-bromo-vinyl-deoxyuridine (BVDU). Although the biological significance of multisubstrate deoxyribonucleoside kinases and their diversity among insects remains unclear, the observed variation provides a whole range of applications, as species specific and highly selective targets for insecticides, they have a potential to be used in the enzymatic production of various (di-)(deoxy-)ribonucleoside monophosphates, and as suicide genes in gene therapy.


Subject(s)
Anopheles/enzymology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Amino Acid Sequence , Animals , Anopheles/cytology , Anopheles/genetics , Cell Line , Chromatography, DEAE-Cellulose , Cloning, Molecular , DNA, Complementary/chemistry , DNA, Complementary/genetics , Electrophoresis, Polyacrylamide Gel , Kinetics , Molecular Sequence Data , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Analysis, DNA , Sequence Homology , Substrate Specificity
3.
J Mol Biol ; 315(4): 529-40, 2002 Jan 25.
Article in English | MEDLINE | ID: mdl-11812127

ABSTRACT

In eukaryotic cells deoxyribonucleoside kinases belonging to three phylogenetic sub-families have been found: (i) thymidine kinase 1 (TK1)-like enzymes, which are strictly pyrimidine deoxyribonucleoside-specific kinases; (ii) TK2-like enzymes, which include pyrimidine deoxyribonucleoside kinases and a single multisubstrate kinase from Drosophila melanogaster (Dm-dNK); and (iii) deoxycytidine/deoxyguanosine kinase (dCK/dGK)-like enzymes, which are deoxycytidine and/or purine deoxyribonucleoside-specific kinases. We cloned and characterized two new deoxyribonucleoside kinases belonging to the TK2-like group from the insect Bombyx mori and the amphibian Xenopus laevis. The deoxyribonucleoside kinase from B. mori (Bm-dNK) turned out to be a multisubstrate kinase like Dm-dNK. But uniquely for a deoxyribonucleoside kinase, Bm-dNK displayed positive cooperativity with all four natural deoxyribonucleoside substrates. The deoxyribonucleoside kinase from X. laevis (Xen-PyK) resembled closely the human and mouse TK2 enzymes displaying their characteristic Michaelis-Menten kinetic with deoxycytidine and negative cooperativity with its second natural substrate thymidine. Bm-dNK, Dm-dNK and Xen-PyK were shown to be homodimers. Significant differences in the feedback inhibition by deoxyribonucleoside triphosphates between these three enzymes were found. The insect multisubstrate deoxyribonucleoside kinases Bm-dNK and Dm-dNK were only inhibited by thymidine triphosphate, while Xen-PyK was inhibited by thymidine and deoxycytidine triphosphate in a complex pattern depending on the deoxyribonucleoside substrate. The broad substrate specificity and different feedback regulation of the multisubstrate insect deoxyribonucleoside kinases may indicate that these enzymes have a different functional role than the other members of the TK2-like group.


Subject(s)
Bombyx/enzymology , Feedback, Physiological , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Thymidine Kinase/chemistry , Xenopus laevis/genetics , Amino Acid Sequence , Animals , Bombyx/genetics , Chickens , Chromatography, Gel , Databases, Genetic , Deoxycytidine/metabolism , Drosophila melanogaster/enzymology , Humans , Inhibitory Concentration 50 , Kinetics , Mice , Models, Biological , Models, Molecular , Molecular Sequence Data , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phylogeny , Protein Structure, Quaternary , Recombinant Fusion Proteins/antagonists & inhibitors , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Sequence Deletion/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...