Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Eur J Pharm Sci ; 111: 393-398, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29037995

ABSTRACT

IQG-607 is an analog of isoniazid with anti-tuberculosis activity. This work describes the development and validation of an HPLC method to quantify pentacyano(isoniazid)ferrate(II) compound (IQG-607) and the pharmacokinetic studies of this compound in mice. The method showed linearity in the 0.5-50µg/mL concentration range (r=0.9992). Intra- and inter-day precision was <5%, and the recovery ranged from 92.07 to 107.68%. IQG-607 was stable in plasma for at least 30days at -80°C and, after plasma processing, for 4h in the auto-sampler maintained on ice (recovery >85%). The applicability of the method for pharmacokinetic studies was determined after intravenous (i.v.) and oral (fasted and fed conditions) administration to mice. IQG-607 levels in plasma were quantified at time points for up to 2.5h. A short half-life (t1/2) (1.14h), a high clearance (CL) (3.89L/h/kg), a moderate volume of distribution at steady state (Vdss) of 1.22L/kg, were observed after i.v. (50mg/kg) administration. Similar results were obtained for oral administration (250mg/kg) under fasted and fed conditions. The oral bioavailability (F), approximately 4%, was not altered by feeding. Plasma protein binding was 88.87±0.9%. The results described here provide novel insights into a pivotal criterion to warrant further efforts to be pursued towards attempts to translate this chemical compound into a chemotherapeutic agent to treat TB.


Subject(s)
Antitubercular Agents/pharmacokinetics , Ferrous Compounds/pharmacokinetics , Isoniazid/analogs & derivatives , Animals , Antitubercular Agents/blood , Area Under Curve , Drug Stability , Ferrous Compounds/blood , Half-Life , Isoniazid/blood , Isoniazid/pharmacokinetics , Mice
2.
Sci Rep ; 7: 46696, 2017 04 24.
Article in English | MEDLINE | ID: mdl-28436453

ABSTRACT

Novel chemotherapeutics agents are needed to kill Mycobacterium tuberculosis, the main causative agent of tuberculosis (TB). The M. tuberculosis 2-trans-enoyl-ACP(CoA) reductase enzyme (MtInhA) is the druggable bona fide target of isoniazid. New chemotypes were previously identified by two in silico approaches as potential ligands to MtInhA. The inhibition mode was determined by steady-state kinetics for seven compounds that inhibited MtInhA activity. Dissociation constant values at different temperatures were determined by protein fluorescence spectroscopy. van't Hoff analyses of ligand binding to MtInhA:NADH provided the thermodynamic signatures of non-covalent interactions (ΔH°, ΔS°, ΔG°). Phenotypic screening showed that five compounds inhibited in vitro growth of M. tuberculosis H37Rv strain. Labio_16 and Labio_17 compounds also inhibited the in vitro growth of PE-003 multidrug-resistant strain. Cytotoxic effects on Hacat, Vero and RAW 264.7 cell lines were assessed for the latter two compounds. The Labio_16 was bacteriostatic and Labio_17 bactericidal in an M. tuberculosis-infected macrophage model. In Zebrafish model, Labio_16 showed no cardiotoxicity whereas Labio_17 showed dose-dependent cardiotoxicity. Accordingly, a model was built for the MtInhA:NADH:Labio_16 ternary complex. The results show that the Labio_16 compound is a direct inhibitor of MtInhA, and it may represent a hit for the development of chemotherapeutic agents to treat TB.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Computer Simulation , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Oxidoreductases/antagonists & inhibitors , Thermodynamics , Animals , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Cell Line , Chlorocebus aethiops , Humans , Kinetics , Mice , Microbial Sensitivity Tests , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/physiology , Oxidoreductases/metabolism , RAW 264.7 Cells , Tuberculosis/microbiology , Vero Cells
3.
J Mol Graph Model ; 60: 124-31, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26043661

ABSTRACT

3-Dehydroquinate dehydratase (DHQase), the third enzyme of the shikimate pathway, catalyzes the reversible reaction of 3-dehydroquinate into 3-dehydroshikimate. The aim of the present study was to identify new drug-like molecules as inhibitors for Mycobacterium tuberculosis DHQase employing structure-based pharmacophore modeling technique using an in house database consisting of about 2500 small molecules. Further the pharmacophore models were validated using enrichment calculations, and finally three models were employed for high-throughput virtual screening and docking to identify novel small molecules as DHQase inhibitors. Five compounds were identified, out of which, one molecule (Lead 1) showed 58% inhibition at 50µ M concentration in the Mtb DHQase assay. Chemical derivatives of the Lead 1 when tested evolved top two hits with IC50s of 17.1 and 31.5 µM as well as MIC values of 25 and 6.25 µg/mL respectively and no cytotoxicity up to 100 µM concentration.


Subject(s)
Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays , Hydro-Lyases/antagonists & inhibitors , Molecular Docking Simulation , Mycobacterium tuberculosis/enzymology , User-Computer Interface , Antitubercular Agents/isolation & purification , Antitubercular Agents/toxicity , Datasets as Topic , Drug Design , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/toxicity , HEK293 Cells , Humans , Inhibitory Concentration 50 , Ligands , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/drug effects , Protein Binding , Structure-Activity Relationship
4.
Invest New Drugs ; 32(6): 1301-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25052233

ABSTRACT

PURPOSE: 5-fluorouracil (5-FU) has been broadly used to treat solid tumors for more than 50 years. One of the major side effects of fluoropyrimidines therapy is oral and intestinal mucositis. Human uridine phosphorylase (hUP) inhibitors have been suggested as modulators of 5-FU toxicity. Therefore, the present study aimed to test the ability of hUP blockers in preventing mucositis induced by 5-FU. METHODS: We induced intestinal mucositis in Wistar rats with 5-FU, and the intestinal damage was evaluated in presence or absence of two hUP1 inhibitors previously characterized. We examined the loss of weight and diarrhea following the treatment, the villus integrity, uridine levels in plasma, and the neutrophil migration by MPO activity. RESULTS: We found that one of the compounds, 6-hydroxy-4-methyl-1H-pyridin-2-one-3-carbonitrile was efficient to promote intestinal mucosa protection and to inhibit the hUP1 enzyme, increasing the uridine levels in the plasma of animals. However, the loss of body weight, diarrhea intensity or neutrophil migration remained unaffected. CONCLUSION: Our results bring support to the hUP1 inhibitor strategy as a novel possibility of prevention and treatment of mucositis during the 5-FU chemotherapy, based on the approach of uridine accumulation in plasma and tissues.


Subject(s)
Antimetabolites, Antineoplastic/adverse effects , Fluorouracil/adverse effects , Intestinal Diseases/drug therapy , Mucositis/drug therapy , Pyridones/therapeutic use , Uridine Phosphorylase/antagonists & inhibitors , Animals , Enzyme Inhibitors/therapeutic use , Female , Humans , Intestinal Diseases/chemically induced , Intestinal Diseases/metabolism , Intestinal Diseases/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestine, Small/drug effects , Intestine, Small/metabolism , Intestine, Small/pathology , Mucositis/chemically induced , Mucositis/metabolism , Mucositis/pathology , Peroxidase/metabolism , Rats, Wistar , Uridine/blood
5.
BMC Biotechnol ; 14: 33, 2014 Apr 27.
Article in English | MEDLINE | ID: mdl-24766778

ABSTRACT

BACKGROUND: Annexin V, a 35.8 kDa intracellular protein, is a Ca⁺²-dependent phospholipid binding protein with high affinity to phosphatidylserine (PS), which is a well-known hallmark of apoptosis. Annexin V is a sensitive probe for PS exposure upon the cell membrane, and used for detection of apoptotic cells both in vivo and in vitro. Large-scale production of recombinant human annexin V is worth optimization, because of its wide use in nuclear medicine, radiolabeled with (99m)Tc, for the evaluation of cancer chemotherapy treatments, and its use in identification of apoptotic cells in histologic studies. Here we describe the high-yield production of a tag-free version of human annexin V recombinant protein by linear fed-batch cultivation in a bioreactor. RESULTS: We cloned the human ANXA5 coding sequence into the pET-30a (+) expression vector and expressed rhANXA5 in batch and fed-batch cultures. Using E. coli BL21 (DE3) in a semi-defined medium at 37°C, pH 7 in fed-batch cultures, we obtained a 45-fold increase in biomass production, respective to shaker cultivations. We developed a single-step protocol for rhANXA5 purification using a strong anion-exchange column (MonoQ HR16/10). Using these procedures, we obtained 28.5 mg of homogeneous, nontagged and biologically functional human annexin V recombinant protein from 3 g wet weight of bacterial cells from bioreactor cultures. The identity and molecular mass of rhANXA5 was confirmed by mass spectrometry. Moreover, the purified rhANXA5 protein was functionally evaluated in a FITC-annexin V binding experiment and the results demonstrated that rhANXA5 detected apoptotic cells similarly to a commercial kit. CONCLUSIONS: We describe a new fed-batch method to produce recombinant human annexin V in large scale, which may expand the commercial utilities for rhANXAV to applications such as in vivo imaging studies.


Subject(s)
Annexin A5/metabolism , Batch Cell Culture Techniques , Annexin A5/chemistry , Annexin A5/genetics , Biomass , Chromatography, Ion Exchange , Cloning, Molecular , Escherichia coli/metabolism , Fluorescein-5-isothiocyanate/chemistry , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
6.
BMC Pregnancy Childbirth ; 11: 24, 2011 Mar 31.
Article in English | MEDLINE | ID: mdl-21453488

ABSTRACT

BACKGROUND: Despite the existence of various published studies regarding the effects of tobacco smoking on pregnancy, and especially in regards to placental blood flow and vascular resistance, some points still require clarification. In addition, the amount of damage due to tobacco smoking exposure that occurs has not been quantified by objective means. In this study, we looked for a possible association between flow resistance indices of several arteries and the levels of urinary cotinine and the concentration of carbon monoxide in the exhaled air (COex) of both smoking and non-smoking pregnant women. We also looked for a relationship between those findings and fetal growth and birth weight. METHODS: In a prospective design, thirty pregnant smokers and thirty-four pregnant non-smokers were studied. The volunteers signed consent forms, completed a self-applied questionnaire and were subjected to Doppler velocimetry. Tobacco smoking exposure was quantified by subject provided information and confirmed by the measurement of urinary cotinine levels and by the concentration of carbon monoxide in the exhaled air (COex). The weight of newborns was evaluated immediately after birth. RESULTS: Comparing smoking to non-smoking pregnant women, a significant increase in the resistance index was observed in the uterine arteries (P = 0.001) and umbilical artery (P = 0.001), and a decrease in the middle cerebral artery (P = 0.450). These findings were associated with progressively higher concentrations of COex and urinary cotinine. A decrease in the birth weight was also detected (P < 0.001) in association with a progressive increase in the tobacco exposure of the pregnant woman. CONCLUSIONS: In pregnant women who smoke, higher arterial resistance indices and lower birth weights were observed, and these findings were associated with increasing levels of tobacco smoking exposure. The values were significantly different when compared to those found in non-smoking pregnant women. This study contributes to the findings that smoking damage during pregnancy is dose-dependent, as demonstrated by the objective methods for measuring tobacco smoking exposure.


Subject(s)
Fetal Blood/physiology , Placental Circulation/drug effects , Smoking/adverse effects , Vascular Resistance/drug effects , Adult , Birth Weight/drug effects , Carbon Monoxide/analysis , Cohort Studies , Cotinine/urine , Female , Fetal Blood/diagnostic imaging , Humans , Infant, Newborn , Middle Cerebral Artery/diagnostic imaging , Middle Cerebral Artery/physiology , Pregnancy , Prospective Studies , Rheology , Self Report , Smoking/urine , Ultrasonography, Doppler, Color , Umbilical Arteries/diagnostic imaging , Umbilical Arteries/physiology , Uterine Artery/diagnostic imaging , Uterine Artery/physiology
7.
Pharmacol Rep ; 61(2): 217-24, 2009.
Article in English | MEDLINE | ID: mdl-19443932

ABSTRACT

Obesity, an ever-increasing problem in the industrialized world, has long been a target of research for a cure or, at least, control of its expansion. In the search for treatment, the recently discovered endocannabinoid system has emerged as a new target for controlling obesity and its associated conditions. The endocannabinoid system plays an important role in controlling weight and energy balance in humans. This system is activated to a greater extent in obese patients, and the specific blockage of its receptors is the aim of rimonabant, one of the most recent drugs created for the treatment of obesity. This drug acts as a blockade for endocannabinoid receptors found in the brain and peripheral organs that play an important role on carbohydrate and fat metabolism. Clinical studies have confirmed that, when used in combination with a low calorie diet, rimonabant promotes loss in body weight, loss in abdominal circumference, and improvements in dyslipidemia. Rimonabant is also being tested as a potential anti-smoking treatment since endocannabinoids are related to the pleasurable effect of nicotine. Thus, rimonabant constitutes a new therapeutic approach to obesity and cardiovascular risk factors. Studies show effectiveness in weight loss; however, side effects such as psychiatric alterations have been reported, including depression and anxiety. These side effects have led the FDA (Food and Drug Administration) to not approve this drug in the United States. For a more complete evaluation on the safety of this drug, additional studies are in progress.


Subject(s)
Anti-Obesity Agents/pharmacology , Cannabinoid Receptor Modulators/antagonists & inhibitors , Endocannabinoids , Piperidines/pharmacology , Pyrazoles/pharmacology , Animals , Clinical Trials as Topic , Drug Approval , Humans , Piperidines/adverse effects , Piperidines/therapeutic use , Pyrazoles/adverse effects , Pyrazoles/therapeutic use , Receptor, Cannabinoid, CB1/drug effects , Receptor, Cannabinoid, CB1/physiology , Receptor, Cannabinoid, CB2/drug effects , Receptor, Cannabinoid, CB2/physiology , Rimonabant
SELECTION OF CITATIONS
SEARCH DETAIL
...