Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 994
Filter
1.
Alzheimers Res Ther ; 16(1): 157, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987827

ABSTRACT

BACKGROUND: White matter hyperintensities (WMH) are considered hallmark features of cerebral small vessel disease and have recently been linked to Alzheimer's disease (AD) pathology. Their distinct spatial distributions, namely periventricular versus deep WMH, may differ by underlying age-related and pathobiological processes contributing to cognitive decline. We aimed to identify the spatial patterns of WMH using the 4-scale Fazekas visual assessment and explore their differential association with age, vascular health, AD imaging markers, namely amyloid and tau burden, and cognition. Because our study consisted of scans from GE and Siemens scanners with different resolutions, we also investigated inter-scanner reproducibility and combinability of WMH measurements on imaging. METHODS: We identified 1144 participants from the Mayo Clinic Study of Aging consisting of a population-based sample from Olmsted County, Minnesota with available structural magnetic resonance imaging (MRI), amyloid, and tau positron emission tomography (PET). WMH distribution patterns were assessed on FLAIR-MRI, both 2D axial and 3D, using Fazekas ratings of periventricular and deep WMH severity. We compared the association of periventricular and deep WMH scales with vascular risk factors, amyloid-PET, and tau-PET standardized uptake value ratio, automated WMH volume, and cognition using Pearson partial correlation after adjusting for age. We also evaluated vendor compatibility and reproducibility of the Fazekas scales using intraclass correlations (ICC). RESULTS: Periventricular and deep WMH measurements showed similar correlations with age, cardiometabolic conditions score (vascular risk), and cognition, (p < 0.001). Both periventricular WMH and deep WMH showed weak associations with amyloidosis (R = 0.07, p = < 0.001), and none with tau burden. We found substantial agreement between data from the two scanners for Fazekas measurements (ICC = 0.82 and 0.74). The automated WMH volume had high discriminating power for identifying participants with Fazekas ≥ 2 (area under curve = 0.97) and showed poor correlation with amyloid and tau PET markers similar to the visual grading. CONCLUSION: Our study investigated risk factors underlying WMH spatial patterns and their impact on global cognition, with no discernible differences between periventricular and deep WMH. We observed minimal impact of amyloidosis on WMH severity. These findings, coupled with enhanced inter-scanner reproducibility of WMH data, suggest the combinability of inter-scanner data assessed by harmonized protocols in the context of vascular contributions to cognitive impairment and dementia biomarker research.


Subject(s)
Alzheimer Disease , Magnetic Resonance Imaging , Positron-Emission Tomography , White Matter , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Female , Male , Aged , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging/methods , Aged, 80 and over , Reproducibility of Results , Middle Aged , tau Proteins/metabolism , Brain/diagnostic imaging , Brain/pathology
2.
medRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38947004

ABSTRACT

Plasma p-tau217 and Tau-PET are strong prognostic biomarkers in Alzheimer's disease (AD), but their relative performance in predicting future cognitive decline among cognitively unimpaired (CU) individuals is unclear. In this head-to-head comparison study including 9 cohorts and 1534 individuals, we found that plasma p-tau217 and medial temporal lobe Tau-PET signal showed similar associations with cognitive decline on a global cognitive composite test (R2 PET=0.32 vs R2 PLASMA=0.32, pdifference=0.812) and with progression to mild cognitive impairment (Hazard ratio[HR]PET=1.56[1.43-1.70] vs HRPLASMA=1.63[1.50-1.77], pdifference=0.627). Combined plasma and PET models were superior to the single biomarker models (R2=0.36, p<0.01). Furthermore, sequential selection using plasma p-tau217 and then Tau-PET reduced the number of participants required for a clinical trial by 94%, compared to a 75% reduction when using plasma p-tau217 alone. We conclude that plasma p-tau217 and Tau-PET showed similar performance for predicting future cognitive decline in CU individuals, and their sequential use (i.e., plasma p-tau217 followed by Tau-PET in a subset with high plasma p-tau217) is useful for screening in clinical trials in preclinical AD.

3.
Neuroimage Clin ; 43: 103639, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38991435

ABSTRACT

Primary progressive aphasia (PPA) variants present with distinct disruptions in speech-language functions with little known about the interplay between affected and spared regions within the speech-language network and their interaction with other functional networks. The Neurodegenerative Research Group, Mayo Clinic, recruited 123 patients with PPA (55 logopenic (lvPPA), 44 non-fluent (nfvPPA) and 24 semantic (svPPA)) who were matched to 60 healthy controls. We investigated functional connectivity disruptions between regions within the left-speech-language network (Broca, Wernicke, anterior middle temporal gyrus (aMTG), supplementary motor area (SMA), planum temporale (PT) and parietal operculum (PO)), and disruptions to other networks (visual association, dorsal-attention, frontoparietal and default mode networks (DMN)). Within the speech-language network, multivariate linear regression models showed reduced aMTG-Broca connectivity in all variants, with lvPPA and nfvPPA findings remaining significant after Bonferroni correction. Additional loss in Wernicke-Broca connectivity in nfvPPA, Wernicke-PT connectivity in lvPPA and greater aMTG-PT connectivity in svPPA were also noted. Between-network connectivity findings in all variants showed reduced aMTG-DMN and increased aMTG-dorsal-attention connectivity, with additional disruptions between aMTG-visual association in both lvPPA and svPPA, aMTG-frontoparietal in lvPPA, and Wernicke-DMN breakdown in svPPA. These findings suggest that aMTG connectivity breakdown is a shared feature in all PPA variants, with lvPPA showing more extensive connectivity disruptions with other networks.

4.
Neuroimage Clin ; 43: 103634, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38909419

ABSTRACT

INTRODUCTION: AD and CVD, which frequently co-occur, are leading causes of age-related cognitive decline. We assessed how demographic factors, socioeconomic status (SES) as indicated by education and occupation, vascular risk factors, and a range of biomarkers associated with both CVD (including white matter hyperintensities [WMH], diffusion MRI abnormalities, infarctions, and microbleeds) and AD (comprising amyloid-PET and tau-PET) collectively influence cognitive function. METHODS: In this cross-sectional population study, structural equation models were utilized to understand these associations in 449 participants (mean age (SD) = 74.5 (8.4) years; 56% male; 7.5% cognitively impaired). RESULTS: (1) Higher SES had a protective effect on cognition with mediation through the vascular pathway. (2) The effect of amyloid directly on cognition and through tau was 11-fold larger than the indirect effect of amyloid on cognition through WMH. (3) There is a significant effect of vascular risk on tau deposition. DISCUSSION: The utilized biomarkers captured the impact of CVD and AD on cognition. The overall effect of vascular risk and SES on these biomarkers are complex and need further investigation.

5.
Mayo Clin Proc ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38935019

ABSTRACT

OBJECTIVE: To evaluate the performance of Alzheimer disease (AD) cerebrospinal fluid (CSF) biomarkers in a tertiary neurology clinic setting with high frequency of non-AD cases, including normal pressure hydrocephalus (NPH). METHODS: There were 534 patients who underwent AD CSF biomarkers (Roche Elecsys Aß42, p-Tau181, total-Tau) from April 1, 2020, through April 23, 2021. A behavioral neurologist blinded to CSF results assigned a clinical diagnosis retrospectively on the basis of consensus criteria, and a neuroradiologist blinded to the diagnosis and CSF studies graded brain magnetic resonance images for indicators of CSF dynamics disorders. Associations between biomarkers, diagnoses, and imaging were assessed by χ2, analysis of covariance, and linear regression methods. RESULTS: Median age at time of testing was 67 years (range, 19 to 96 years), median symptom duration was 2 years (range, 0.4 to 28 years), and median Short Test of Mental Status score was 30 (range, 0 to 38). Clinical diagnoses significantly correlated with different CSF biomarker values (χ2=208.3; P=10e-4). p-Tau181/Aß42 ratios above 0.023 positively correlated with Alzheimer dementia (more than individual measures). This ratio also had the best performance for differentiating Alzheimer dementia from NPH (area under the curve, 0.869). Imaging markers supportive of CSF dynamics disorders correlated with low Aß42, p-Tau181, and total-Tau. CONCLUSION: In a heterogeneous clinical population, abnormal p-Tau181/Aß42 ratios (>0.023) have the strongest association with Alzheimer dementia and probably represent a comorbid AD pathologic component in persons clearly matching non-AD neurodegenerative syndromes. Altered CSF dynamics were associated with lower concentrations of AD CSF biomarkers regardless of clinical diagnosis, but the ratio compensates for these changes. In the appropriate clinical setting, an isolated abnormal Aß42 should prompt consideration of NPH.

6.
Nat Commun ; 15(1): 4758, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902234

ABSTRACT

To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Astrocytes , Blood-Brain Barrier , Pericytes , Smad3 Protein , Vascular Endothelial Growth Factor A , Zebrafish , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Smad3 Protein/metabolism , Smad3 Protein/genetics , Astrocytes/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Animals , Pericytes/metabolism , Pericytes/pathology , Male , Induced Pluripotent Stem Cells/metabolism , Female , Aged , Transcriptome , Brain/metabolism , Brain/pathology , Brain/blood supply , Aged, 80 and over , Disease Models, Animal
7.
J Alzheimers Dis ; 99(3): 1023-1032, 2024.
Article in English | MEDLINE | ID: mdl-38728190

ABSTRACT

Background: TAR DNA binding protein 43 (TDP-43) has been shown to be associated with whole hippocampal atrophy in primary age-related tauopathy (PART). It is currently unknown which subregions of the hippocampus are contributing to TDP-43 associated whole hippocampal atrophy in PART. Objective: To identify which specific hippocampal subfield regions are contributing to TDP-43-associated whole hippocampal atrophy in PART. Methods: A total of 115 autopsied cases from the Mayo Clinic Alzheimer Disease Research Center, Neurodegenerative Research Group, and the Mayo Clinic Study of Aging were analyzed. All cases underwent antemortem brain volumetric MRI, neuropathological assessment of the distribution of Aß (Thal phase), and neurofibrillary tangle (Braak stage) to diagnose PART, as well as assessment of TDP-43 presence/absence in the amygdala, hippocampus and beyond. Hippocampal subfield segmentation was performed using FreeSurfer version 7.4.1. Statistical analyses using logistic regression were performed to assess for associations between TDP-43 and hippocampal subfield volumes, accounting for potential confounders. Results: TDP-43 positive patients (n = 37, 32%), of which 15/15 were type-α, had significantly smaller whole hippocampal volumes, and smaller volumes of the body and tail of the hippocampus compared to TDP-43 negative patients. Subfield analyses revealed an association between TDP-43 and the molecular layer of hippocampal body and the body of cornu ammonis 1 (CA1), subiculum, and presubiculum regions. There was no association between TDP-43 stage and subfield volumes. Conclusions: Whole hippocampal volume loss linked to TDP-43 in PART is mainly due to volume loss occurring in the molecular layer, CA1, subiculum and presubiculum of the hippocampal body.


Subject(s)
Atrophy , DNA-Binding Proteins , Hippocampus , Tauopathies , Humans , Male , Female , Atrophy/pathology , Tauopathies/pathology , Tauopathies/diagnostic imaging , Aged , DNA-Binding Proteins/metabolism , Hippocampus/pathology , Hippocampus/diagnostic imaging , Aged, 80 and over , Magnetic Resonance Imaging , Middle Aged
8.
Nat Rev Neurol ; 20(6): 364-376, 2024 06.
Article in English | MEDLINE | ID: mdl-38769202

ABSTRACT

Increasing appreciation of the phenotypic and biological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, alongside evolving biomarker evidence for a pre-symptomatic stage of disease and observations that this stage of disease might not always be clinically silent, is challenging traditional views of these disorders. These advances have highlighted the need to adapt ingrained notions of these clinical syndromes to include both the full phenotypic continuum - from clinically silent, to prodromal, to clinically manifest - and the expanded phenotypic spectrum that includes ALS, frontotemporal dementia and some movement disorders. The updated clinical paradigms should also align with our understanding of the biology of these disorders, reflected in measurable biomarkers. The Miami Framework, emerging from discussions at the Second International Pre-Symptomatic ALS Workshop in Miami (February 2023; a full list of attendees and their affiliations appears in the Supplementary Information) proposes a classification system built on: first, three parallel phenotypic axes - motor neuron, frontotemporal and extrapyramidal - rather than the unitary approach of combining all phenotypic elements into a single clinical entity; and second, biomarkers that reflect different aspects of the underlying pathology and biology of neurodegeneration. This framework decouples clinical syndromes from biomarker evidence of disease and builds on experiences from other neurodegenerative diseases to offer a unified approach to specifying the pleiotropic clinical manifestations of disease and describing the trajectory of emergent biomarkers.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Phenotype , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/metabolism , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Biomarkers/metabolism
9.
J Nucl Med ; 65(7): 1122-1128, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38782458

ABSTRACT

The widespread deposition of amyloid-ß (Aß) plaques in late-stage Alzheimer disease is well defined and confirmed by in vivo PET. However, there are discrepancies between which regions contribute to the earliest topographic Aß deposition within the neocortex. Methods: This study investigated Aß signals in the perithreshold SUV ratio range using Pittsburgh compound B (PiB) PET in a population-based study cross-sectionally and longitudinally. PiB PET scans from 1,088 participants determined the early patterns of PiB loading in the neocortex. Results: Early-stage Aß loading is seen first in the temporal, cingulate, and occipital regions. Regional early deposition patterns are similar in both apolipoprotein ε4 carriers and noncarriers. Clustering analysis shows groups with different patterns of early amyloid deposition. Conclusion: These findings of initial Aß deposition patterns may be of significance for diagnostics and understanding the development of Alzheimer disease phenotypes.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Neocortex , Positron-Emission Tomography , Thiazoles , Humans , Neocortex/diagnostic imaging , Neocortex/metabolism , Amyloid beta-Peptides/metabolism , Male , Female , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Aniline Compounds , Middle Aged , Aged, 80 and over , Cross-Sectional Studies , Longitudinal Studies , Radiopharmaceuticals
10.
Neurology ; 102(10): e209386, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38710005

ABSTRACT

BACKGROUND AND OBJECTIVES: Updated criteria for the clinical-MRI diagnosis of cerebral amyloid angiopathy (CAA) have recently been proposed. However, their performance in individuals without symptomatic intracerebral hemorrhage (ICH) presentations is less defined. We aimed to assess the diagnostic performance of the Boston criteria version 2.0 for CAA diagnosis in a cohort of individuals ranging from cognitively normal to dementia in the community and memory clinic settings. METHODS: Fifty-four participants from the Mayo Clinic Study of Aging or Alzheimer's Disease Research Center were included if they had an antemortem MRI with gradient-recall echo sequences and a brain autopsy with CAA evaluation. Performance of the Boston criteria v2.0 was compared with v1.5 using histopathologically verified CAA as the reference standard. RESULTS: The median age at MRI was 75 years (interquartile range 65-80) with 28/54 participants having histopathologically verified CAA (i.e., moderate-to-severe CAA in at least 1 lobar region). The sensitivity and specificity of the Boston criteria v2.0 were 28.6% (95% CI 13.2%-48.7%) and 65.3% (95% CI 44.3%-82.8%) for probable CAA diagnosis (area under the receiver operating characteristic curve [AUC] 0.47) and 75.0% (55.1-89.3) and 38.5% (20.2-59.4) for any CAA diagnosis (possible + probable; AUC 0.57), respectively. The v2.0 Boston criteria were not superior in performance compared with the prior v1.5 criteria for either CAA diagnostic category. DISCUSSION: The Boston criteria v2.0 have low accuracy in patients who are asymptomatic or only have cognitive symptoms. Additional biomarkers need to be explored to optimize CAA diagnosis in this population.


Subject(s)
Cerebral Amyloid Angiopathy , Magnetic Resonance Imaging , Humans , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/pathology , Aged , Female , Male , Magnetic Resonance Imaging/standards , Aged, 80 and over , Sensitivity and Specificity , Brain/diagnostic imaging , Brain/pathology , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology
12.
Neurocase ; 30(1): 1-7, 2024 02.
Article in English | MEDLINE | ID: mdl-38758704

ABSTRACT

A research participant was monitored over nearly two decades at Mayo Clinic, undergoing annual neurologic assessments, neuropsychological tests, and multimodal imaging. Initially, he was cognitively normal but developed symptoms consistent with Posterior Cortical Atrophy (PCA) during the study. Early tests indicated mild, yet normal-range declines in language and visuospatial skills. FDG-PET scans revealed increased metabolism in posterior brain regions long before symptoms appeared. Advanced analysis using a novel in-house machine-learning tool predicted concurrent Alzheimer's disease and dementia with Lewy bodies. Autopsy confirmed a mixed neurodegenerative condition with significant Alzheimer's pathology and dense neocortical Lewy bodies. This case underscores the value of longitudinal imaging in predicting complex neurodegenerative diseases, offering vital insights into the early neurocognitive changes associated with PCA and dementia with Lewy bodies.


Subject(s)
Atrophy , Lewy Body Disease , Positron-Emission Tomography , Humans , Lewy Body Disease/pathology , Lewy Body Disease/metabolism , Lewy Body Disease/diagnostic imaging , Male , Atrophy/pathology , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Aged , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Prodromal Symptoms , Neuropsychological Tests
13.
Article in English | MEDLINE | ID: mdl-38710025

ABSTRACT

IMPORTANCE: Emerging literature has associated the use of anticholinergic medications to cognitive decline. OBJECTIVE: The aim of this study was to evaluate the association of overactive bladder medications on cognitive function with prospective longitudinal cognitive assessments. STUDY DESIGN: A population-based cohort of individuals 50 years and older who had serial validated cognitive assessment, in accordance with the Mayo Clinic Study of Aging, was evaluated from October 2004 through December 2021. Anticholinergic overactive bladder medications were grouped by traditional anticholinergic medications and central nervous system (CNS)- sparing anticholinergic medications and compared to no medication exposure. A linear mixed effects model with time-dependent exposures evaluated the association between overactive bladder anticholinergic medication exposure and subsequent trajectories of cognitive z-scores. RESULTS: We included 5,872 participants with a median follow-up of 6.4 years. Four hundred forty-three were exposed to traditional anticholinergic medications, 60 to CNS-sparing medications, and 5,369 had no exposure. On multivariable analyses, exposure to any anticholinergic overactive bladder medication was significantly associated with deterioration in longitudinal cognitive scores in the language and attention assessments compared to the control cohort. Traditional anticholinergic medication exposure was associated with worse attention scores than nonexposed participants. Exposure to CNS-sparing anticholinergic medications was associated with a deterioration in the language domain compared to those unexposed. Among women, traditional anticholinergic medication exposure was associated with worse global and visuospatial scores than nonexposed participants, but this association was not identified in the CNS-sparing group. CONCLUSION: Exposure to anticholinergic overactive bladder medications was associated with small but significantly worse decline in cognitive scoring in the language and attention domains when compared to nonexposed individuals.

14.
Mayo Clin Proc ; 99(5): 716-726, 2024 May.
Article in English | MEDLINE | ID: mdl-38702125

ABSTRACT

OBJECTIVE: To evaluate the associations between prescription opioid exposures in community-dwelling older adults and gray and white matter structure by magnetic resonance imaging. METHODS: Secondary analysis was conducted of a prospective, longitudinal population-based cohort study employing cross-sectional imaging of older adult (≥65 years) enrollees between November 1, 2004, and December 31, 2017. Gray matter outcomes included cortical thickness in 41 structures and subcortical volumes in 6 structures. White matter outcomes included fractional anisotropy in 40 tracts and global white matter hyperintensity volumes. The primary exposure was prescription opioid availability expressed as the per-year rate of opioid days preceding magnetic resonance imaging, with a secondary exposure of per-year total morphine milligram equivalents (MME). Multivariable models assessed associations between opioid exposures and brain structures. RESULTS: The study included 2185 participants; median (interquartile range) age was 80 (75 to 85) years, 47% were women, and 1246 (57%) received opioids. No significant associations were found between opioids and gray matter. Increased opioid days and MME were associated with decreased white matter fractional anisotropy in 15 (38%) and 16 (40%) regions, respectively, including the corpus callosum, posterior thalamic radiation, and anterior limb of the internal capsule, among others. Opioid days and MME were also associated with greater white matter hyperintensity volume (1.02 [95% CI, 1.002 to 1.036; P=.029] and 1.01 [1.001 to 1.024; P=.032] increase in the geometric mean, respectively). CONCLUSION: The duration and dose of prescription opioids were associated with decreased white matter integrity but not with gray matter structure. Future studies with longitudinal imaging and clinical correlation are warranted to further evaluate these relationships.


Subject(s)
Analgesics, Opioid , Independent Living , Magnetic Resonance Imaging , Humans , Female , Male , Aged , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/adverse effects , Aged, 80 and over , Prospective Studies , Magnetic Resonance Imaging/methods , Gray Matter/diagnostic imaging , Gray Matter/drug effects , Gray Matter/pathology , Brain/diagnostic imaging , Brain/drug effects , Brain/pathology , White Matter/diagnostic imaging , White Matter/drug effects , Longitudinal Studies , Cross-Sectional Studies
15.
JAMA Neurol ; 81(6): 619-629, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38619853

ABSTRACT

Importance: Factors associated with clinical heterogeneity in Alzheimer disease (AD) lay along a continuum hypothesized to associate with tangle distribution and are relevant for understanding glial activation considerations in therapeutic advancement. Objectives: To examine clinicopathologic and neuroimaging characteristics of disease heterogeneity in AD along a quantitative continuum using the corticolimbic index (CLix) to account for individuality of spatially distributed tangles found at autopsy. Design, Setting, and Participants: This cross-sectional study was a retrospective medical record review performed on the Florida Autopsied Multiethnic (FLAME) cohort accessioned from 1991 to 2020. Data were analyzed from December 2022 to December 2023. Structural magnetic resonance imaging (MRI) and tau positron emission tomography (PET) were evaluated in an independent neuroimaging group. The FLAME cohort includes 2809 autopsied individuals; included in this study were neuropathologically diagnosed AD cases (FLAME-AD). A digital pathology subgroup of FLAME-AD cases was derived for glial activation analyses. Main Outcomes and Measures: Clinicopathologic factors of heterogeneity that inform patient history and neuropathologic evaluation of AD; CLix score (lower, relative cortical predominance/hippocampal sparing vs higher, relative cortical sparing/limbic predominant cases); neuroimaging measures (ie, structural MRI and tau-PET). Results: Of the 2809 autopsied individuals in the FLAME cohort, 1361 neuropathologically diagnosed AD cases were evaluated. A digital pathology subgroup included 60 FLAME-AD cases. The independent neuroimaging group included 93 cases. Among the 1361 FLAME-AD cases, 633 were male (47%; median [range] age at death, 81 [54-96] years) and 728 were female (53%; median [range] age at death, 81 [53-102] years). A younger symptomatic onset (Spearman ρ = 0.39, P < .001) and faster decline on the Mini-Mental State Examination (Spearman ρ = 0.27; P < .001) correlated with a lower CLix score in FLAME-AD series. Cases with a nonamnestic syndrome had lower CLix scores (median [IQR], 13 [9-18]) vs not (median [IQR], 21 [15-27]; P < .001). Hippocampal MRI volume (Spearman ρ = -0.45; P < .001) and flortaucipir tau-PET uptake in posterior cingulate and precuneus cortex (Spearman ρ = -0.74; P < .001) inversely correlated with CLix score. Although AD cases with a CLix score less than 10 had higher cortical tangle count, we found lower percentage of CD68-activated microglia/macrophage burden (median [IQR], 0.46% [0.32%-0.75%]) compared with cases with a CLix score of 10 to 30 (median [IQR], 0.75% [0.51%-0.98%]) and on par with a CLix score of 30 or greater (median [IQR], 0.40% [0.32%-0.57%]; P = .02). Conclusions and Relevance: Findings show that AD heterogeneity exists along a continuum of corticolimbic tangle distribution. Reduced CD68 burden may signify an underappreciated association between tau accumulation and microglia/macrophages activation that should be considered in personalized therapy for immune dysregulation.


Subject(s)
Alzheimer Disease , Magnetic Resonance Imaging , Neuroglia , Positron-Emission Tomography , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Male , Female , Aged , Aged, 80 and over , Neuroglia/pathology , Neuroglia/metabolism , Cross-Sectional Studies , Retrospective Studies , Neurofibrillary Tangles/pathology , tau Proteins/metabolism , Middle Aged , Neuroimaging , Cohort Studies , Brain/diagnostic imaging , Brain/pathology , Brain/metabolism , Autopsy
16.
J Neurol ; 271(7): 4105-4118, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38578498

ABSTRACT

OBJECTIVE: To evaluate the utility of clinical assessment scales for MRI and 18F-FDG-PET as potential in vivo predictive diagnostic tools for TAR DNA-binding protein of 43 kDa (TDP-43) proteinopathy in cases with low-intermediate Alzheimer's disease neuropathologic changes (ADNC) and primary age-related tauopathy (PART). METHODS: We conducted a cross-sectional analysis on patients with antemortem MRI and 18F-FDG-PET scans and postmortem diagnosis of low-intermediate ADNC or PART (Braak stage ≤ III; Thal ß-amyloid phase 0-5). We employed visual imaging scales to grade structural changes on MRI and metabolic changes on 18F-FDG-PET and statistically compared demographic and clinicopathological characteristics between TDP-43 positive and negative cases. Independent regression analyses were performed to assess further influences of pathological characteristics on imaging outcomes. Within-reader repeatability and inter-reader reliability were calculated (CI = 0.95). Additional quantitative region-of-interest analyses of MRI gray matter volumes and PET ligand uptake were performed. RESULTS: Of the 64 cases in the study, 20 (31%) were TDP-43 ( +), of which 12 (60%) were female. TDP-43 ( +) cases were more likely to have hippocampal sclerosis (HS) (p = 0.014) and moderate-severe medial temporal lobe atrophy on MRI (p = 0.048). TDP-43( +) cases also showed a trend for less parietal atrophy on MRI (p = 0.086) and more medial temporal lobe hypometabolism on 18F-FDG-PET (p = 0.087) than TDP-43( - ) cases. Regression analysis showed an association between medial temporal hypometabolism and HS (p = 0.0113). ICC values for MRI and PET within one reader were 0.75 and 0.91; across two readers were 0.79 and 0.82. The region-of-interest-based analysis confirmed a significant difference between TDP-43( +) and TDP-43( - ) cases for medial temporal lobe gray matter volume on MRI (p = 0.014) and medial temporal metabolism on PET (p = 0.011). CONCLUSION: Visual inspection of the medial temporal lobe on MRI and FDG-PET may help to predict TDP-43 status in the context of low-intermediate ADNC and PART.


Subject(s)
Alzheimer Disease , DNA-Binding Proteins , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Positron-Emission Tomography , Tauopathies , Humans , Female , Male , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Positron-Emission Tomography/methods , Cross-Sectional Studies , Tauopathies/diagnostic imaging , Tauopathies/metabolism , Tauopathies/pathology , Aged, 80 and over , DNA-Binding Proteins/metabolism , Multimodal Imaging , Brain/diagnostic imaging , Brain/pathology , Brain/metabolism , Middle Aged , TDP-43 Proteinopathies/diagnostic imaging , TDP-43 Proteinopathies/pathology
17.
Acta Neuropathol ; 147(1): 73, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38641715

ABSTRACT

The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Cerebellum , Frontotemporal Lobar Degeneration , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cerebellum/pathology , DNA Repeat Expansion/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Gene Expression Profiling , Transcriptome
18.
NPJ Parkinsons Dis ; 10(1): 76, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570511

ABSTRACT

Dementia with Lewy bodies (DLB) is a neurodegenerative condition often co-occurring with Alzheimer's disease (AD) pathology. Characterizing white matter tissue microstructure using Neurite Orientation Dispersion and Density Imaging (NODDI) may help elucidate the biological underpinnings of white matter injury in individuals with DLB. In this study, diffusion tensor imaging (DTI) and NODDI metrics were compared in 45 patients within the dementia with Lewy bodies spectrum (mild cognitive impairment with Lewy bodies (n = 13) and probable dementia with Lewy bodies (n = 32)) against 45 matched controls using conditional logistic models. We evaluated the associations of tau and amyloid-ß with DTI and NODDI parameters and examined the correlations of AD-related white matter injury with Clinical Dementia Rating (CDR). Structural equation models (SEM) explored relationships among age, APOE ε4, amyloid-ß, tau, and white matter injury. The DLB spectrum group exhibited widespread white matter abnormalities, including reduced fractional anisotropy, increased mean diffusivity, and decreased neurite density index. Tau was significantly associated with limbic and temporal white matter injury, which was, in turn, associated with worse CDR. SEM revealed that amyloid-ß exerted indirect effects on white matter injury through tau. We observed widespread disruptions in white matter tracts in DLB that were not attributed to AD pathologies, likely due to α-synuclein-related injury. However, a fraction of the white matter injury could be attributed to AD pathology. Our findings underscore the impact of AD pathology on white matter integrity in DLB and highlight the utility of NODDI in elucidating the biological basis of white matter injury in DLB.

19.
Sci Adv ; 10(14): eadk3674, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38569027

ABSTRACT

The immune system substantially influences age-related cognitive decline and Alzheimer's disease (AD) progression, affected by genetic and environmental factors. In a Mayo Clinic Study of Aging cohort, we examined how risk factors like APOE genotype, age, and sex affect inflammatory molecules and AD biomarkers in cerebrospinal fluid (CSF). Among cognitively unimpaired individuals over 65 (N = 298), we measured 365 CSF inflammatory molecules, finding age, sex, and diabetes status predominantly influencing their levels. We observed age-related correlations with AD biomarkers such as total tau, phosphorylated tau-181, neurofilament light chain (NfL), and YKL40. APOE4 was associated with lower Aß42 and higher SNAP25 in CSF. We explored baseline variables predicting cognitive decline risk, finding age, CSF Aß42, NfL, and REG4 to be independently correlated. Subjects with older age, lower Aß42, higher NfL, and higher REG4 at baseline had increased cognitive impairment risk during follow-up. This suggests that assessing CSF inflammatory molecules and AD biomarkers could predict cognitive impairment risk in the elderly.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/etiology , Alzheimer Disease/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , tau Proteins , Biomarkers , Amyloid beta-Peptides , Peptide Fragments
SELECTION OF CITATIONS
SEARCH DETAIL
...