Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Leukoc Biol ; 116(1): 118-131, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38417030

ABSTRACT

Neutrophils are rapidly recruited to sites of infection and are critical for pathogen clearance. Therapeutic use of primary neutrophils has been limited, as they have a short lifespan and are not amenable to genetic manipulation. Human induced pluripotent stem cells (iPSCs) can provide a robust source of neutrophils for infusion and are genetically tractable. However, current work has indicated that dampened intracellular signaling limits iPSC-derived neutrophil (iNeutrophil) cellular activation and antimicrobial response. Here, we show that protein tyrosine phosphatase 1B (PTP1B) inhibits intracellular signaling and dampens iNeutrophil effector function. Deletion of the PTP1B phosphatase increased PI3K and ERK signaling and was associated with increased F-actin polymerization, cell migration, and phagocytosis. In contrast, other effector functions like NETosis and reactive oxygen species production were reduced. PTP1B-deficient neutrophils were more responsive to Aspergillus fumigatus and displayed rapid recruitment and control of hyphal growth. Accordingly, depletion of PTP1B increased production of inflammatory factors including the neutrophil chemokine interleukin-8. Taken together, these findings suggest that PTP1B limits iNeutrophil motility and antimicrobial function.


Subject(s)
Cell Movement , Induced Pluripotent Stem Cells , Neutrophils , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Neutrophils/metabolism , Neutrophils/immunology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Aspergillus fumigatus , Phagocytosis , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Extracellular Traps/metabolism , Extracellular Traps/immunology , Actins/metabolism
2.
Bioinspir Biomim ; 18(4)2023 06 30.
Article in English | MEDLINE | ID: mdl-37339652

ABSTRACT

This paper investigates a pursuit-evasion game with a single pursuer and evader in a bounded environment, inspired by observations of predation attempts by lionfish (Pterois sp.). The pursuer tracks the evader with a pure pursuit strategy while using an additional bioinspired tactic to trap the evader, i.e. minimize the evader's escape routes. Specifically, the pursuer employs symmetric appendages inspired by the large pectoral fins of lionfish, but this expansion increases its drag and therefore its work to capture the evader. The evader employs a bioinspired randomly-directed escape strategy to avoid capture and collisions with the boundary. Here we investigate the trade-off between minimizing the work to capture the evader and minimizing the evader's escape routes. By using the pursuer's expected work to capture as a cost function, we determine when the pursuer should expand its appendages as a function of the relative distance to the evader and the evader's proximity to the boundary. Visualizing the pursuer's expected work to capture everywhere in the bounded domain, yields additional insights about optimal pursuit trajectories and illustrates the role of the boundary in predator-prey interactions.


Subject(s)
Perciformes , Predatory Behavior , Animals
3.
Proc Biol Sci ; 289(1980): 20221085, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35919997

ABSTRACT

The pursuit of prey is vital to the biology of a predator and many aspects of predatory behaviour are well-studied. However, it is unclear how a pursuit can be effective when the prey is faster than a non-cryptic predator. Using kinematic measurements, we considered the strategy of red lionfish (Pterois volitans) as they pursued a faster prey fish (Chromis viridis) under laboratory conditions. Despite swimming about half as fast as C. viridis, lionfish succeeded in capturing prey in 61% of our experiments. This successful pursuit behaviour was defined by three critical characteristics. First, lionfish targeted C. viridis with pure pursuit by adjusting their heading towards the prey's position and not the anticipated point of interception. Second, lionfish pursued prey with uninterrupted motion. By contrast, C. viridis moved intermittently with variation in speed that included slow swimming. Such periods allowed lionfish to close the distance to a prey and initiate a suction-feeding strike at a relatively close distance (less than 9 cm). Finally, lionfish exhibited a high rate of strike success, capturing prey in 74% of all strikes. These characteristics comprise a behaviour that we call the 'persistent-predation strategy', which may be exhibited by a diversity of predators with relatively slow locomotion.


Subject(s)
Perciformes , Predatory Behavior , Animals , Fishes , Swimming
4.
Integr Comp Biol ; 61(2): 668-680, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34061183

ABSTRACT

Predator-prey interactions are critical to the biology of a diversity of animals. Although prey capture is determined by the direction, velocity, and timing of motion by both animals, it is generally unclear what strategies are employed by predators and prey to guide locomotion. Here we review our research on fishes that tests the pursuit strategy of predators and the evasion strategy of prey through kinematic measurements and agent-based models. This work demonstrates that fish predators track prey with variations on a deviated-pursuit strategy that is guided by visual cues. Fish prey employ a mixed strategy that varies with factors such as the direction of a predator's approach. Our models consider the stochastic nature of interactions by incorporating measured probability distributions to accurately predict measurements of survivorship. A sensitivity analysis of these models shows the importance of the response distance of prey to their survival. Collectively, this work demonstrates how strategy affects the outcome of predator-prey interactions and articulates the roles of sensing, control, and propulsion. The research program that we have developed has the potential to offer a framework for the study of strategy in the predator-prey interactions of a variety of animals.


Subject(s)
Fishes , Predatory Behavior , Animals , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...