Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 251: 117634, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32251632

ABSTRACT

Neuregulin-1ß (NRG-1) is a membrane-bound or secreted growth and differentiation factor that mediates its action by binding to ErbB receptors. Circulating levels of NRG-1 are characterized by large inter-individual variability with the range of absolute values covering two orders of magnitude, from hundreds to tens of thousands of picograms per milliliter of blood. NRG-1 signaling via ErbB receptors contributes to the cell survival and downregulation of the inflammatory response. A higher level of circulating NRG-1 may indicate increased shedding of membrane-bound NRG-1, which in turn can contribute to better protection against cardiovascular stress or injury. However, it is unknown whether circulating NRG-1 can induce activation of ErbB receptors. In the current study, we performed an analysis of circulating NRG-1 functional activity using a cell-based ELISA measuring phosphorylation of ErbB3 induced by blood plasma obtained from healthy donors. We found high levels of ErbB3 activating activity in human plasma. No correlations were found between the levels of circulating NRG-1 and plasma ErbB3 activating activity. To determine the direct effect of circulating NRG-1, we incubated plasma with neutralizing antibody, which prevented the stimulatory effect of recombinant NRG-1 on activation of ErbB3. No effect of the neutralizing antibody was found on plasma-induced phosphorylation of ErbB3. We also found that a significant portion of circulating NRG-1 is comprised of full-length NRG-1 associated with large extracellular vesicles. Our results demonstrate that circulating NRG-1 does not contribute to plasma-induced ErbB3 activating activity and emphasizes the importance of functional testing of NRG-1 proteins in biological samples.


Subject(s)
Cell Survival/physiology , Neuregulin-1/metabolism , Receptor, ErbB-3/metabolism , Adult , Aged , Antibodies, Neutralizing/immunology , Down-Regulation , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Phosphorylation
2.
J Surg Res ; 251: 287-295, 2020 07.
Article in English | MEDLINE | ID: mdl-32199337

ABSTRACT

BACKGROUND: The endothelial glycocalyx (EG) is involved in critical regulatory mechanisms that maintain endothelial vascular integrity. We hypothesized that prolonged cardiopulmonary bypass (CPB) may be associated with EG degradation. We performed an analysis of soluble syndecan-1 levels in relation to duration of CPB, as well as factors associated with cell stress and damage, such as mitochondrial DNA (mtDNA) and inflammation. METHODS: Blood samples from subjects undergoing cardiac surgery with CPB (n = 54) were obtained before and during surgery, 4-8 h and 24 h after completion of CPB, and on postoperative day 4. Flow cytometry was used to determine subpopulations of white blood cells. Plasma levels of mtDNA were determined using quantitative polymerase chain reaction and plasma content of shed syndecan-1 was measured. To determine whether syndecan-1 was signaling white blood cells, the effect of recombinant syndecan-1 on mobilization of neutrophils from bone marrow was tested in mice. RESULTS: CPB is associated with increased mtDNA during surgery, increased syndecan-1 blood levels at 4-8 h, and increased white blood cell count at 4-8 h and 24 h. Correlation analysis revealed significant positive associations between time on CPB and syndecan-1 (rs = 0.488, P < 0.001) and level of syndecan-1 and neutrophil count (rs = 0.351, P = 0.038) at 4-8 h. Intravenous administration of recombinant syndecan-1 in mice resulted in a 2.5-fold increase in the number of circulating neutrophils, concurrent with decreased bone marrow neutrophil number. CONCLUSIONS: Longer duration of CPB is associated with increased plasma levels of soluble syndecan-1, a signal for EG degradation, which can induce neutrophil egress from the bone marrow. Development of therapy targeting EG shedding may be beneficial in patients with prolonged CPB.


Subject(s)
Cardiopulmonary Bypass/adverse effects , Endothelium/ultrastructure , Glycocalyx/physiology , Operative Time , Aged , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/pathology , Cardiopulmonary Bypass/methods , DNA, Mitochondrial/blood , Female , Humans , Interleukin-6/blood , Leukocyte Count , Male , Mice , Middle Aged , Neutrophils/pathology , Recombinant Proteins/pharmacology , Syndecan-1/blood , Syndecan-1/pharmacology
3.
J Vis Exp ; (147)2019 05 22.
Article in English | MEDLINE | ID: mdl-31180342

ABSTRACT

Nephron endowment refers to the total number of nephrons an individual is born with, as nephrogenesis in humans is completed by 36 weeks of gestation and no new nephrons are formed post-birth. Nephron number refers to the total number of nephrons measured at any point in time post-birth. Both genetic and environmental factors influence both nephron endowment and number. Understanding how specific genes or factors influence the process of nephrogenesis and nephron loss or demise is important as individuals with lower nephron endowment or number are thought to be at a higher risk of developing renal or cardiovascular disease. Understanding how environmental exposures over the course of a person's lifetime affects nephron number will also be vital in determining future disease risk. Thus, the ability to assess whole kidney nephron number quickly and reliably is a basic experimental requirement to better understand mechanisms that contribute to or promote nephrogenesis or nephron loss. Here, we describe the acid maceration method for the estimation of whole kidney nephron number based on the procedure described by Damadian, Shawayri, and Bricker, with slight modifications. The acid maceration method provides fast and reliable estimates of nephron number (as assessed by counting glomeruli) that are within 5% of those determined using more advanced, albeit expensive, methods such as magnetic resonance imaging. Moreover, the acid maceration method is an excellent high-throughput method to assess nephron number in large numbers of samples or experimental conditions.


Subject(s)
Cytological Techniques/methods , Kidney/anatomy & histology , Nephrons/cytology , Animals , Kidney/cytology , Kidney Glomerulus/cytology , Male , Mice , Mice, Inbred C57BL
4.
Arterioscler Thromb Vasc Biol ; 38(7): 1576-1593, 2018 07.
Article in English | MEDLINE | ID: mdl-29853569

ABSTRACT

OBJECTIVE: Vascular remodeling is associated with complex molecular changes, including increased Notch2, which promotes quiescence in human smooth muscle cells. We used unbiased protein profiling to understand molecular signatures related to neointimal lesion formation in the presence or absence of Notch2 and to test the hypothesis that loss of Notch2 would increase neointimal lesion formation because of a hyperproliferative injury response. APPROACH AND RESULTS: Murine carotid arteries isolated at 6 or 14 days after ligation injury were analyzed by mass spectrometry using a data-independent acquisition strategy in comparison to uninjured or sham injured arteries. We used a tamoxifen-inducible, cell-specific Cre recombinase strain to delete the Notch2 gene in smooth muscle cells. Vessel morphometric analysis and immunohistochemical staining were used to characterize lesion formation, assess vascular smooth muscle cell proliferation, and validate proteomic findings. Loss of Notch2 in smooth muscle cells leads to protein profile changes in the vessel wall during remodeling but does not alter overall lesion morphology or cell proliferation. Loss of smooth muscle Notch2 also decreases the expression of enhancer of rudimentary homolog, plectin, and annexin A2 in vascular remodeling. CONCLUSIONS: We identified unique protein signatures that represent temporal changes in the vessel wall during neointimal lesion formation in the presence and absence of Notch2. Overall lesion formation was not affected with loss of smooth muscle Notch2, suggesting compensatory pathways. We also validated the regulation of known injury- or Notch-related targets identified in other vascular contexts, providing additional insight into conserved pathways involved in vascular remodeling.


Subject(s)
Carotid Artery Injuries/metabolism , Mass Spectrometry , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima , Proteomics/methods , Receptor, Notch2/metabolism , Vascular Remodeling , Aged , Aged, 80 and over , Animals , Annexin A2/metabolism , Carotid Artery Injuries/genetics , Carotid Artery Injuries/pathology , Carotid Artery, Common/metabolism , Carotid Artery, Common/pathology , Cell Cycle Proteins/metabolism , Cell Proliferation , Disease Models, Animal , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Plectin/metabolism , Receptor, Notch2/deficiency , Receptor, Notch2/genetics , Signal Transduction , Transcription Factors/metabolism
5.
J Mol Cell Cardiol ; 115: 39-50, 2018 02.
Article in English | MEDLINE | ID: mdl-29291395

ABSTRACT

The adult human heart contains a subpopulation of highly proliferative cells. The role of ErbB receptors in these cells has not been studied. From human left ventricular (LV) epicardial biopsies, we isolated highly proliferative cells (eHiPC) to characterize the cell surface expression and function of ErbB receptors in the regulation of cell proliferation and phenotype. We found that human LV eHiPC express all four ErbB receptor subtypes. However, the expression of ErbB receptors varied widely among eHiPC isolated from different subjects. eHiPC with higher cell surface expression of ErbB2 reproduced the phenotype of endothelial cells and were characterized by endothelial cell-like functional properties. We also found that EGF/ErbB1 induces VEGFR2 expression, while ligands for both ErbB1 and ErbB3/4 induce expression of Tie2. The number of CD31posCD45neg endothelial cells is higher in LV biopsies from subjects with high ErbB2 (ErbB2high) eHiPC compared to low ErbB2 (ErbB2low) eHiPC. These findings have important implications for potential strategies to increase the efficacy of cell-based revascularization of the injured heart, through promotion of an endothelial phenotype in cardiac highly proliferative cells.


Subject(s)
Endothelial Cells/cytology , Endothelial Cells/metabolism , Heart Ventricles/cytology , Pericardium/cytology , Receptor, ErbB-2/metabolism , Animals , Biomarkers/metabolism , Biopsy , Cell Count , Cell Membrane/metabolism , Cell Membrane Permeability , Cell Proliferation , Epidermal Growth Factor/metabolism , Female , Humans , Ligands , Male , Middle Aged , Phenotype , Rats , Signal Transduction , Up-Regulation
6.
Vascul Pharmacol ; 63(2): 97-104, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25464152

ABSTRACT

Notch signaling plays many important roles in homeostasis and remodeling in the vessel wall, and serves a critical role in the communication between endothelial cells and smooth muscle cells. Within blood vessels, Notch signaling integrates with multiple pathways by mechanisms including direct protein­protein interaction, cooperative or synergistic regulation of signal cascades, and co-regulation of transcriptional targets. After establishment of the mature blood vessel, the spectrum and intensity of Notch signaling change during phases of active remodeling or disease progression. These changes can be mediated by regulation via microRNAs and protein stability or signaling, and corresponding changes in complementary signaling pathways. Notch also affects endothelial cells on a system level by regulating key metabolic components. This review will outline the most recent findings of Notch activity in blood vessels, with a focus on how Notch signals integrate with other molecular signaling pathways controlling vascular phenotype.


Subject(s)
Blood Vessels/metabolism , Receptors, Notch/metabolism , Signal Transduction/physiology , Animals , Endothelial Cells/metabolism , Humans , Myocytes, Smooth Muscle/metabolism , Phenotype
7.
Front Genet ; 5: 23, 2014.
Article in English | MEDLINE | ID: mdl-24600468

ABSTRACT

The human genome encodes for over 1800 microRNAs (miRNAs), which are short non-coding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one miRNA to target multiple gene transcripts, miRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of miRNA targets is a critical initial step in identifying miRNA:mRNA target interactions for experimental validation. The available tools for miRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to miRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all miRNA target prediction tools, four main aspects of the miRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MiRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output.

8.
J Biol Chem ; 286(32): 28312-21, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21685392

ABSTRACT

Activation of Notch signaling by Jagged-1 (Jag-1) in vascular smooth muscle cells (VSMC) promotes a differentiated phenotype characterized by increased expression of contractile proteins. Recent studies show that microRNAs (miR)-143/145 regulates VSMC phenotype. The serum response factor (SRF)/myocardin complex binds to CArG sequences to activate miR-143/145 transcription, but no other regulators are known in VSMC. Using miR arrays, we found miR-143/145 induced following expression of a constitutively active Notch1 intracellular domain (N1ICD). We hypothesized that miR-143/145 is required for Jag-1/Notch-induced VSMC differentiation. Activation of Notch receptors by Jag-1 caused CBF1-dependent up-regulation of miR-143/145, increased differentiation, and decreased proliferation. Conversely, inhibiting basal Notch signaling decreased steady state levels of miR-143/145. Using SRF knockdown, we found that Jag-1/Notch induction of miR-143/145 is SRF independent, although full acquisition of contractile markers requires SRF. Using miR-143/145 promoter reporter constructs we show Jag-1/Notch increases promoter activity, and this is dependent on intact CBF1 consensus sites within the promoter. Chromatin immunoprecipitation (ChIP) assays revealed that N1ICD-containing complexes bind to CBF1 sites in the miR-143/145 promoter. We also identified N1ICD complex binding to CBF1 sites within the endogenous human miR-143/145 promoter. Using miR-143/145-interfering oligonucleotides, we demonstrate that Jag-1/Notch signaling requires induction of both miR-143 and miR-145 to promote the VSMC contractile phenotype. Thus, miR-143/145 is a novel transcriptional target of Jag-1/Notch signaling in VSMC. We propose miR-143/145 as activated independently by Jag-1/Notch and SRF in parallel pathways. Multiple pathways converging on miR-143/145 provides potential for fine-tuning or amplification of VSMC differentiation signals.


Subject(s)
Calcium-Binding Proteins/metabolism , Cell Differentiation/physiology , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , MicroRNAs/biosynthesis , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Receptors, Notch/metabolism , Signal Transduction/physiology , Calcium-Binding Proteins/genetics , Cells, Cultured , Gene Knockdown Techniques , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Jagged-1 Protein , Membrane Proteins/genetics , MicroRNAs/genetics , Multigene Family/physiology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Receptors, Notch/genetics , Response Elements/physiology , Serrate-Jagged Proteins , Serum Response Factor/genetics , Serum Response Factor/metabolism
9.
BMC Cancer ; 10: 427, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20707913

ABSTRACT

BACKGROUND: Extracellular human sulfatases modulate growth factor signaling by alteration of the heparin/heparan sulfate proteoglycan (HSPG) 6-O-sulfation state. HSPGs bind to numerous growth factor ligands including fibroblast growth factors (FGF), epidermal growth factors (EGF), and vascular endothelial growth factors (VEGF), and are critically important in the context of cancer cell growth, invasion, and metastasis. We hypothesized that sulfatase activity in the tumor microenvironment would regulate tumor growth in vivo. METHODS: We established a model of stable expression of sulfatases in the human breast cancer cell line MDA-MB-231 and purified recombinant human Sulfatase 2 (rhSulf2) for exogenous administration. In vitro studies were performed to measure effects on breast cancer cell invasion and proliferation, and groups were statistically compared using Student's t-test. The effects of hSulf2 on tumor progression were tested using in vivo xenografts with two methods. First, MDA-MB-231 cells stably expressing hSulf1, hSulf2, or both hSulf1/hSulf2 were grown as xenografts and the resulting tumor growth and vascularization was compared to controls. Secondly, wild type MDA-MB-231 xenografts were treated by short-term intratumoral injection with rhSulf2 or vehicle during tumor growth. Ultrasound analysis was also used to complement caliper measurement to monitor tumor growth. In vivo studies were statistically analyzed using Student's t test. RESULTS: In vitro, stable expression of hSulf2 or administration of rhSulf2 in breast cancer cells decreased cell proliferation and invasion, corresponding to an inhibition of ERK activation. Stable expression of the sulfatases in xenografts significantly suppressed tumor growth, with complete regression of tumors expressing both hSulf1 and hSulf2 and significantly smaller tumor volumes in groups expressing hSulf1 or hSulf2 compared to control xenografts. Despite significant suppression of tumor volume, sulfatases did not affect vascular density within the tumors. By contrast, transient exogenous treatment of MDA-MB-231 xenografts with rhSulf2 was not sufficient to inhibit or reverse tumor growth. CONCLUSION: These data indicate that in vivo progression of human breast cancer xenografts can be inhibited with sulfatase expression, and therapeutic effect requires constant delivery at the tumor site. Our results support a direct effect of sulfatases on tumor growth or invasion, rather than an effect in the stromal compartment.


Subject(s)
Breast Neoplasms/enzymology , Breast Neoplasms/prevention & control , Cell Proliferation , Recombinant Proteins/metabolism , Sulfotransferases/metabolism , Animals , Blotting, Western , Breast Neoplasms/genetics , Cell Adhesion , Cell Line, Tumor , Cell Movement , Enzyme Activation , Female , Humans , Mice , Mice, Nude , Mitogen-Activated Protein Kinase 3/metabolism , RNA, Messenger/genetics , Recombinant Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sulfatases , Sulfotransferases/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...