Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19193, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357509

ABSTRACT

Dickeya fangzhongdai, a bacterial pathogen of taro (Colocasia esculenta), onion (Allium sp.), and several species in the orchid family (Orchidaceae) causes soft rot and bleeding canker diseases. No field-deployable diagnostic tool is available for specific detection of this pathogen in different plant tissues. Therefore, we developed a field-deployable loop-mediated isothermal amplification (LAMP) assay using a unique genomic region, present exclusively in D. fangzhongdai. Multiple genomes of D. fangzhongdai, and other species of Dickeya, Pectobacterium and unrelated genera were used for comparative genomic analyses to identify an exclusive and conserved target sequence from the major facilitator superfamily (MFS) transporter gene region. This gene region had broad detection capability for D. fangzhongdai and thus was used to design primers for endpoint PCR and LAMP assays. In-silico validation showed high specificity with D. fangzhongdai genome sequences available in the NCBI GenBank genome database as well as the in-house sequenced genome. The specificity of the LAMP assay was determined with 96 strains that included all Dickeya species and Pectobacterium species as well as other closely related genera and 5 hosts; no false positives or false negatives were detected. The detection limit of the assay was determined by performing four sensitivity assays with tenfold serially diluted purified genomic DNA of D. fangzhongdai with and without the presence of crude host extract (taro, orchid, and onion). The detection limit for all sensitivity assays was 100 fg (18-20 genome copies) with no negative interference by host crude extracts. The assays were performed by five independent operators (blind test) and on three instruments (Rotor-Gene, thermocycler and dry bath); the assay results were concordant. The assay consistently detected the target pathogen from artificially inoculated and naturally infected host samples. The developed assay is highly specific for D. fangzhongdai and has applications in routine diagnostics, phytosanitary and seed certification programs, and epidemiological studies.


Subject(s)
Orchidaceae , Pectobacterium , Dickeya , Nucleic Acid Amplification Techniques/methods , Genomics , Enterobacteriaceae/genetics , Pectobacterium/genetics , Orchidaceae/genetics , Sensitivity and Specificity
2.
Appl Plant Sci ; 6(2): e1023, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29732254

ABSTRACT

PREMISE OF THE STUDY: Biological collections are uniquely poised to inform the stewardship of life on Earth in a time of cataclysmic biodiversity loss. Efforts to fully leverage collections are impeded by a lack of trained taxonomists and a lack of interest and engagement by the public. We provide a model of a crowd-sourced data collection project that produces quality taxonomic data sets and empowers citizen scientists through real contributions to science. Entitled MicroPlants, the project is a collaboration between taxonomists, citizen science experts, and teachers and students from universities and K-12. METHODS: We developed an online tool that allows citizen scientists to measure photographs of specimens of a hyper-diverse group of liverworts from a biodiversity hotspot. RESULTS: Using the MicroPlants online tool, citizen scientists are generating high-quality data, with preliminary analysis indicating non-expert data can be comparable to expert data. DISCUSSION: More than 11,000 users from both the website and kiosk versions have contributed to the data set, which is demonstrably aiding taxonomists working toward establishing conservation priorities within this group. MicroPlants provides opportunities for public participation in authentic science research. The project's educational component helps move youth toward engaging in scientific thinking and has been adopted by several universities into curriculum for both biology and non-biology majors.

3.
Proc Natl Acad Sci U S A ; 113(39): 10992-7, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27625424

ABSTRACT

Dystroglycan (DG) is a highly expressed extracellular matrix receptor that is linked to the cytoskeleton in skeletal muscle. DG is critical for the function of skeletal muscle, and muscle with primary defects in the expression and/or function of DG throughout development has many pathological features and a severe muscular dystrophy phenotype. In addition, reduction in DG at the sarcolemma is a common feature in muscle biopsies from patients with various types of muscular dystrophy. However, the consequence of disrupting DG in mature muscle is not known. Here, we investigated muscles of transgenic mice several months after genetic knockdown of DG at maturity. In our study, an increase in susceptibility to contraction-induced injury was the first pathological feature observed after the levels of DG at the sarcolemma were reduced. The contraction-induced injury was not accompanied by increased necrosis, excitation-contraction uncoupling, or fragility of the sarcolemma. Rather, disruption of the sarcomeric cytoskeleton was evident as reduced passive tension and decreased titin immunostaining. These results reveal a role for DG in maintaining the stability of the sarcomeric cytoskeleton during contraction and provide mechanistic insight into the cause of the reduction in strength that occurs in muscular dystrophy after lengthening contractions.


Subject(s)
Cytoskeleton/metabolism , Dystroglycans/metabolism , Muscle Contraction , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Sarcomeres/metabolism , Animals , Connectin/metabolism , Cytoskeleton/drug effects , Excitation Contraction Coupling/drug effects , Female , Isometric Contraction/drug effects , Male , Mice, Knockout , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Necrosis , Organ Size , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sarcolemma/metabolism , Sarcomeres/drug effects , Tamoxifen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...