Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Mayo Clin Proc ; 98(3): 372-385, 2023 03.
Article in English | MEDLINE | ID: mdl-36868745

ABSTRACT

OBJECTIVE: To ascertain whether heart failure (HF) itself is a senescent phenomenon independent of age, and how this is reflected at a molecular level in the circulating progenitor cell niche, and at a substrate level using a novel electrocardiogram (ECG)-based artificial intelligence platform. PATIENTS AND METHODS: Between October 14, 2016, and October 29, 2020, CD34+ progenitor cells were analyzed by flow cytometry and isolated by magnetic-activated cell sorting from patients of similar age with New York Heart Association functional classes IV (n = 17) and I-II (n = 10) heart failure with reduced ejection fraction and healthy controls (n = 10). CD34+ cellular senescence was quantitated by human telomerase reverse transcriptase expression and telomerase expression by quantitative polymerase chain reaction, and senescence-associated secretory phenotype (SASP) protein expression assayed in plasma. An ECG-based artificial intelligence (AI) algorithm was used to determine cardiac age and difference from chronological age (AI ECG age gap). RESULTS: CD34+ counts and telomerase expression were significantly reduced and AI ECG age gap and SASP expression increased in all HF groups compared with healthy controls. Expression of SASP protein was closely associated with telomerase activity and severity of HF phenotype and inflammation. Telomerase activity was more closely associated with CD34+ cell counts and AI ECG age gap. CONCLUSION: We conclude from this pilot study that HF may promote a senescent phenotype independent of chronological age. We show for the first time that the AI ECG in HF shows a phenotype of cardiac aging beyond chronological age, and appears to be associated with cellular and molecular evidence of senescence.


Subject(s)
Heart Failure , Telomerase , Humans , Artificial Intelligence , Pilot Projects , Electrocardiography , Biomarkers
2.
J Neurosurg ; 138(5): 1291-1301, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36115048

ABSTRACT

OBJECTIVE: The profound immunosuppression found in glioblastoma (GBM) patients is a critical barrier to effective immunotherapy. Multiple mechanisms of tumor-mediated immune suppression exist, and the induction of immunosuppressive monocytes such as myeloid-derived suppressor cells (MDSCs) is increasingly appreciated as a key part of this pathology. GBM-derived extracellular vesicles (EVs) can induce the formation of MDSCs. The authors sought to identify the molecular consequences of these interactions in myeloid cells in order to identify potential targets that could pharmacologically disrupt GBM EV-monocyte interaction as a means to ameliorate tumor-mediated immune suppression. Heparin-sulfate proteoglycans (HSPGs) are a general mechanism by which EVs come into association with their target cells, and soluble heparin has been shown to interfere with EV-HSPG interactions. The authors sought to assess the efficacy of heparin treatment for mitigating the effects of GBM EVs on the formation of MDSCs. METHODS: GBM EVs were collected from patient-derived cell line cultures via staged ultracentrifugation and cocultured with monocytes collected from apheresis cones from healthy blood donors. RNA was isolated from EV-conditioned and unconditioned monocytes after 72 hours of coculture, and RNA-sequencing analysis performed. For the heparin treatment studies, soluble heparin was added at the time of EV-monocyte coculture and flow cytometry analysis was performed 72 hours later. After the initial EV-monocyte coculture period, donor-matched T-cell coculture studies were performed by adding fluorescently labeled and stimulated T cells for 5 days of coculture. RESULTS: Transcriptomic analysis of GBM EV-treated monocytes demonstrated downregulation of several important immunological and metabolic pathways, with upregulation of the pathways associated with synthesis of cholesterol and HSPG. Heparin treatment inhibited association between GBM EVs and monocytes in a dose-dependent fashion, which resulted in a concomitant reduction in MDSC formation (p < 0.01). The authors further demonstrated that reduced MDSC formation resulted in a partial rescue of immune suppression, as measured by effects on activated donor-matched T cells (p < 0.05). CONCLUSIONS: The authors demonstrated that GBM EVs induce broad but reproducible reprogramming in monocytes, with enrichment of pathways that may portend an immunosuppressive phenotype. The authors further demonstrated that GBM EV-monocyte interactions are potentially druggable targets for overcoming tumor-mediated immune suppression, with heparin inhibition of EV-monocyte interactions demonstrating proof of principle.


Subject(s)
Extracellular Vesicles , Glioblastoma , Humans , Monocytes/metabolism , Glioblastoma/pathology , Heparan Sulfate Proteoglycans/metabolism , Extracellular Vesicles/metabolism , RNA/metabolism , Heparin
4.
Regen Med ; 17(11): 805-817, 2022 11.
Article in English | MEDLINE | ID: mdl-36193669

ABSTRACT

Aim: To investigate the regenerative effects of a platelet-derived purified exosome product (PEP) on human endometrial cells. Materials & methods: Endometrial adenocarcinoma cells (HEC-1A), endometrial stromal cells (T HESC) and menstrual blood-derived stem cells (MenSC) were assessed for exosome absorption and subsequent changes in cell proliferation and wound healing properties over 48 h. Results: Cell proliferation increased in PEP treated T HESC (p < 0.0001) and MenSC (p < 0.001) after 6 h and in HEC-1A (p < 0.01) after 12 h. PEP improved wound healing after 6 h in HEC-1A (p < 0.01) and MenSC (p < 0.0001) and in T HESC between 24 and 36 h (p < 0.05). Conclusion: PEP was absorbed by three different endometrial cell types. PEP treatment increased cell proliferation and wound healing capacity.


The uterus has a remarkable ability to heal itself. Every month the inside lining of the uterus grows in preparation for pregnancy and sheds if no pregnancy occurs. Unfortunately, this cycle of growth, shedding and repair can be injured and lead to menstrual changes, pain or even infertility. In this study, we looked how special cell messengers ­ called exosomes ­ could help uterine cells. Exosomes are special messengers that contain substances to help the body heal and regenerate injured cells and tissues. We obtained exosomes created from human transfusion-grade platelets. We studied the exosomes' effects in three different cell types that all are important inside the uterine lining. Specifically, we studied the ability of the exosomes to help cells proliferate and migrate into a wound. In this study, exosomes were recognized by the human endometrial cells and were absorbed. Once they were inside the cells, they increased cell proliferation as well as the ability of the cells to heal a scratch wound. Furthermore, the more exosomes we presented to the cells, the more the cells were able to proliferate and move into a wound for healing. These findings lay the groundwork for future studies in animal models of uterine injury.


Subject(s)
Exosomes , Cell Proliferation , Endometrium , Female , Humans , Stromal Cells/metabolism , Wound Healing
5.
NPJ Regen Med ; 7(1): 58, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36175423

ABSTRACT

Urinary incontinence afflicts up to 40% of adult women in the United States. Stress urinary incontinence (SUI) accounts for approximately one-third of these cases, precipitating ~200,000 surgical procedures annually. Continence is maintained through the interplay of sub-urethral support and urethral sphincter coaptation, particularly during activities that increase intra-abdominal pressure. Currently, surgical correction of SUI focuses on the re-establishment of sub-urethral support. However, mesh-based repairs are associated with foreign body reactions and poor localized tissue healing, which leads to mesh exposure, prompting the pursuit of technologies that restore external urethral sphincter function and limit surgical risk. The present work utilizes a human platelet-derived CD41a and CD9 expressing extracellular vesicle product (PEP) enriched for NF-κB and PD-L1 and derived to ensure the preservation of lipid bilayer for enhanced stability and compatibility with hydrogel-based sustained delivery approaches. In vitro, the application of PEP to skeletal muscle satellite cells in vitro drove proliferation and differentiation in an NF-κB-dependent fashion, with full inhibition of impact on exposure to resveratrol. PEP biopotentiation of collagen-1 and fibrin glue hydrogel achieved sustained exosome release at 37 °C, creating an ultrastructural "bead on a string" pattern on scanning electron microscopy. Initial testing in a rodent model of latissimus dorsi injury documented activation of skeletal muscle proliferation of healing. In a porcine model of stress urinary incontinence, delivery of PEP-biopotentiated collagen-1 induced functional restoration of the external urethral sphincter. The histological evaluation found that sustained PEP release was associated with new skeletal muscle formation and polarization of local macrophages towards the regenerative M2 phenotype. The results provided herein serve as the first description of PEP-based biopotentiation of hydrogels implemented to restore skeletal muscle function and may serve as a promising approach for the nonsurgical management of SUI.

6.
Neurooncol Adv ; 4(1): vdac089, 2022.
Article in English | MEDLINE | ID: mdl-35967100

ABSTRACT

Background: Glioblastoma (GBM) has poor prognosis despite aggressive treatment. Dendritic cell (DC) vaccines are promising, but widespread clinical use has not been achieved, possibly reflecting manufacturing issues of antigen choice and DC potency. We previously optimized vaccine manufacture utilizing allogeneic human GBM tumor cell lysate and potent, mature autologous DCs. Here, we report a phase I study using this optimized DC vaccine in combination with standard therapy. Methods: Following surgical resection and radiation with concurrent temozolomide (TMZ), newly diagnosed adult GBM patients received intradermal DC vaccines plus TMZ. Primary endpoints were safety and feasibility. Immune and treatment responses were recorded. Results: Twenty-one patients were enrolled in this study. One progressed between leukapheresis and vaccine manufacture. Twenty patients received treatment per protocol. Vaccine doses (≥15) were generated following a single leukapheresis for each patient. No dose-limiting vaccine toxicities were encountered. One patient had symptomatic, histologically proven pseudoprogression. Median progression-free survival was 9.7 months. Median overall survival was 19 months. Overall survival was 25% at 2 years and 10% at 4 years. One patient remains progression-free 5 years after enrollment. Specific CD8 T-cell responses for the tumor-associated antigen gp100 were seen post-vaccination. Patients entered the trial with a leukocyte deficit compared to healthy donors which partly normalized over the course of therapy. Conclusions: This vaccine platform is safe and highly feasible in combination with standard therapy for newly diagnosed patients. Imaging, histological, survival, and immunological data suggest a positive biological response to therapy that warrants further investigation.

7.
J Neurooncol ; 156(2): 269-279, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34984645

ABSTRACT

BACKGROUND: Medulloblastoma (MB) and diffuse infiltrative pontine glioma (DIPG) are malignant pediatric tumors. Extracellular vesicles (EVs) and their bioactive cargoes have been implicated in tumorigenesis. Most studies have focused on adult tumors, therefore the role of EVs and the noncoding RNA (ncRNA) landscape in pediatric brain tumors is not fully characterized. The overall aim of this pilot study was to isolate EVs from MB and DIPG patient-derived cell lines and to explore the small ncRNA transcriptome. METHODS: EVs from 3 DIPG and 4 MB patient-derived cell lines were analyzed. High-throughput next generation sequencing interrogated the short non-coding RNA (ncRNA) transcriptome. Known and novel miRNAs were quantified. Differential expression analysis, in silico target prediction, and functional gene enrichment were performed. RESULTS: EV secretomes from MB and DIPG patient-derived cell lines demonstrated discrete ncRNA biotypes. Notably, miRNAs were depleted and Y RNAs were enriched in EV samples. Hierarchical cluster analysis revealed high discrimination in miRNA expression between DIPG and MB cell lines and RNA-Seq identified novel miRNAs not previously implicated in MB or DIPG pathogenesis. Known and putative target genes of dysregulated miRNAs were identified. Functional annotation analysis of the target genes for differentially expressed EV-and parental-derived miRNAs revealed significant cancer-related pathway involvement. CONCLUSIONS: This hypothesis-generating study demonstrated that pediatric brain tumor-derived cell lines secrete EVs comprised of various ncRNA cargoes. Validation of these findings in patient samples may provide new insights into the pediatric brain tumor microenvironment and identification of novel therapeutic candidates.


Subject(s)
Brain Neoplasms , Extracellular Vesicles , MicroRNAs , RNA, Small Untranslated , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Child , Extracellular Vesicles/metabolism , Humans , MicroRNAs/metabolism , Pilot Projects , RNA, Small Untranslated/metabolism
8.
Orthop J Sports Med ; 9(12): 23259671211062929, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34988236

ABSTRACT

BACKGROUND: Tendons are primarily acellular, limiting their intrinsic regenerative capabilities. This limited regenerative potential contributes to delayed healing, rupture, and adhesion formation after tendon injury. PURPOSE: To determine if a tendon's intrinsic regenerative potential could be improved after the application of a purified exosome product (PEP) when loaded onto a collagen scaffold. STUDY DESIGN: Controlled laboratory study. METHODS: An in vivo rabbit Achilles tendon model was used and consisted of 3 groups: (1) Achilles tenotomy with suture repair, (2) Achilles tenotomy with suture repair and collagen scaffold, and (3) Achilles tenotomy with suture repair and collagen scaffold loaded with PEP at 1 × 1012 exosomes/mL. Each group consisted of 15 rabbits for a total of 45 specimens. Mechanical and histologic analyses were performed at both 3 and 6 weeks. RESULTS: The load to failure and ultimate tensile stress were found to be similar across all groups (P ≥ .15). The tendon cross-sectional area was significantly smaller for tendons treated with PEP compared with the control groups at 6 weeks, which was primarily related to an absence of external adhesions (P = .04). Histologic analysis confirmed these findings, demonstrating significantly lower adhesion grade both macroscopically (P = .0006) and microscopically (P = .0062) when tendons were treated with PEP. Immunohistochemical staining showed a greater intensity for type 1 collagen for PEP-treated tendons compared with collagen-only or control tendons. CONCLUSION: Mechanical and histologic results suggested that healing in the PEP-treated group favored intrinsic healing (absence of adhesions) while control animals and animals treated with collagen only healed primarily via extrinsic scar formation. Despite a smaller cross-sectional area, treated tendons had the same ultimate tensile stress. This pilot investigation shows promise for PEP as a means of effectively treating tendon injuries and enhancing intrinsic healing. CLINICAL RELEVANCE: The production of a cell-free, off-the-shelf product that can promote tendon regeneration would provide a viable solution for physicians and patients to enhance tendon healing and decrease adhesions as well as shorten the time required to return to work or sports.

9.
Neurooncol Adv ; 2(1): vdaa105, 2020.
Article in English | MEDLINE | ID: mdl-33134920

ABSTRACT

BACKGROUND: Glioblastoma, the most common primary malignant brain tumor, is nearly universally fatal by 5 years. Dendritic cell vaccines are promising but often limited clinically by antigen choice, dendritic cell potency, and/or manufacturing yield. We optimized vaccine manufacture, generating potent mature autologous dendritic cells pulsed with allogeneic glioblastoma lysates. METHODS: Platelet lysate-based supplement was used to establish human glioblastoma cell lines. Phenotype and genotype were assessed. An improved culture technique to generate mature dendritic cells from glioblastoma patients' monocytes was developed. The ability of T cells stimulated with autologous dendritic cells pulsed with allogeneic glioblastoma cell lysate to kill HLA-A2-matched glioblastoma cells was assessed. RESULTS: Glioblastoma cell lines established with platelet lysate supplement grew faster and expressed more stem-like markers than lines grown in neural stem cell media or in the presence of serum. They expressed a variety of glioma-associated antigens and had genomic abnormalities characteristic of glioblastoma stable up to 15 doublings. Unlike standard culture techniques, our optimized technique produced high levels of mature dendritic cells from glioblastoma patients' monocytes. Autologous T cells stimulated with mature dendritic cells pulsed with allogeneic glioblastoma cell line lysate briskly killed HLA-A2-matched glioblastoma cells. CONCLUSIONS: Our glioblastoma culture method provides a renewable source for a broad spectrum glioblastoma neoantigens while our dendritic cell culture technique results in more mature dendritic cells in glioblastoma patients than standard techniques. This broadly applicable strategy could be easily integrated into patient care.

10.
Neuro Oncol ; 22(7): 967-978, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32080744

ABSTRACT

BACKGROUND: Immunosuppression in glioblastoma (GBM) is an obstacle to effective immunotherapy. GBM-derived immunosuppressive monocytes are central to this. Programmed cell death ligand 1 (PD-L1) is an immune checkpoint molecule, expressed by GBM cells and GBM extracellular vesicles (EVs). We sought to determine the role of EV-associated PD-L1 in the formation of immunosuppressive monocytes. METHODS: Monocytes collected from healthy donors were conditioned with GBM-derived EVs to induce the formation of immunosuppressive monocytes, which were quantified via flow cytometry. Donor-matched T cells were subsequently co-cultured with EV-conditioned monocytes in order to assess effects on T-cell proliferation. PD-L1 constitutive overexpression or short hairpin RNA-mediated knockdown was used to determined the role of altered PD-L1 expression. RESULTS: GBM EVs interact with both T cells and monocytes but do not directly inhibit T-cell activation. However, GBM EVs induce immunosuppressive monocytes, including myeloid-derived suppressor cells (MDSCs) and nonclassical monocytes (NCMs). MDSCs and NCMs inhibit T-cell proliferation in vitro and are found within GBM in situ. EV PD-L1 expression induces NCMs but not MDSCs, and does not affect EV-conditioned monocytes T-cell inhibition. CONCLUSION: These findings indicate that GBM EV-mediated immunosuppression occurs through induction of immunosuppressive monocytes rather than direct T-cell inhibition and that, while PD-L1 expression is important for the induction of specific immunosuppressive monocyte populations, immunosuppressive signaling mechanisms through EVs are complex and not limited to PD-L1.


Subject(s)
Extracellular Vesicles , Glioblastoma , Myeloid-Derived Suppressor Cells , B7-H1 Antigen , Humans , Monocytes
11.
J Neurooncol ; 146(2): 253-263, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31912278

ABSTRACT

INTRODUCTION: Like all nucleated cells, glioblastoma (GBM) cells shed small membrane-encapsulated particles called extracellular vesicles (EVs). EVs can transfer oncogenic components and promote tumor growth by transferring short non-coding RNAs, altering target cell gene expression. Furthermore, GBM-derived EVs can be detected in blood and have potential to serve as liquid biopsies. METHODS: EVs were harvested from culture supernatants from human GBM cell lines, purified via sequential centrifugation, and quantified by nanoparticle tracking. RNA was isolated and short non-coding RNA was sequenced. Data was analyzed via the OASIS-2.0 platform using HG38. MirTarBase and MirDB interrogated validated/predicted miRNA-gene interactions respectively. RESULTS: Many short non-coding RNA's were identified within GBM EV's. In keeping with earlier reports utilizing GBM EV micro-RNA (miRNA) arrays, these included abundant micro-RNA's including miR-21. However, RNA sequencing revealed a total of 712 non-coding RNA sequences most of which have not been associated with GBM EV's previously. These included many RNA species (piRNA, snoRNA, snRNA, rRNA and yRNAs) in addition to miRNA's. miR-21-5p, let-7b-5p, miR-3182, miR-4448, let-7i-5p constituted highest overall expression. Top genes targeted by non-coding RNA's were highly conserved and specific for cell cycle, PI3K/Akt signaling, p53 and Glioma curated KEGG pathways. CONCLUSIONS: Next generation short non-coding RNA sequencing on GBM EV's validates findings from earlier studies using miRNA arrays but also demonstrates expression of many additional non-coding RNA sequences and classes previously unassociated with GBM. This may yield important insights into pathophysiology, point to new therapeutic targets, and help develop new biomarkers for disease burden and treatment response.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Extracellular Vesicles/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , MicroRNAs/genetics , RNA, Small Untranslated/genetics , Aged , Brain Neoplasms/pathology , Extracellular Vesicles/pathology , Female , Glioblastoma/pathology , Humans , Male , Middle Aged , Prognosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Survival Rate , Tumor Cells, Cultured
12.
Front Oncol ; 9: 651, 2019.
Article in English | MEDLINE | ID: mdl-31380286

ABSTRACT

Gliomas including glioblastoma (GBM) are the most common primary malignant brain tumors. Glioma extracellular vesicles (EVs) including exosomes have biological effects (e.g., immunosuppression) and contain tumor-specific cargo that could facilitate liquid biopsies. We aimed to develop a simple, reproducible technique to isolate plasma exosomes in glioma patients. Glioma patients' and normal donors' plasma exosomes underwent brief centrifugation to remove cells/debris followed by serial density gradient ultracentrifugation (DGU). EV size/concentration was determined by nanoparticle tracking. Protein cargo was screened by array, western blot, and ELISA. Nanoscale flow cytometry analysis quantified exosome and microvesicle populations pre- and post-DGU. One-step DGU efficiently isolates exosomes for nanoparticle tracking. Wild type isocitrate dehydrogenase glioma patients' (i.e., more aggressive tumors) plasma exosomes are smaller but higher concentration than normal donors. A second DGU efficiently concentrates exosomes for subsequent cargo analysis but results in vesicle aggregation that skews nanoparticle tracking. Cytokines and co-stimulatory molecules are readily detected but appeared globally reduced in GBM patients' exosomes. Surprisingly, immunosuppressive programmed death-ligand 1 (PD-L1) is present in both patients' and normal donors' exosomes. Nanoscale flow cytometry confirms efficient exosome (<100 nm) isolation post-DGU but also demonstrates increase in microvesicles (>100 nm) in GBM patients' plasma pre-DGU. Serial DGU efficiently isolates plasma exosomes with distinct differences between GBM patients and normal donors, suggesting utility for non-invasive biomarker assessment. Initial results suggest global immunosuppression rather than increased circulating tumor-derived immunosuppressive exosomes, though further assessment is needed. Increased glioma patients' plasma microvesicles suggest these may also be a key source for biomarkers.

13.
PLoS One ; 14(7): e0220569, 2019.
Article in English | MEDLINE | ID: mdl-31361777

ABSTRACT

Abnormal activation of signal transducer and activator of transcription 3 (STAT3) transcription factor has been observed in many human cancers with roles in tumor initiation, progression, drug resistance, angiogenesis and immunosuppression. STAT3 is constitutively activated in a variety of cancers including adult high grade gliomas (aHGGs) such as glioblastoma (GBM), and pediatric high grade gliomas (pHGG). Inhibiting STAT3 is a promising target-specific chemotherapeutic strategy for tumors with aberrant STAT3 signaling. Here we investigated the antitumor effects of novel pyrazole-based STAT3 pathway inhibitors named MNS1 (Mayo Neurosurgery 1) in both pediatric and adult HGG tumor cells. MNS1 compounds selectively decreased cell viability and proliferation in patient-derived HGG cells with minimal toxicity on normal human astrocytes. These inhibitors selectively blocked IL-6-induced STAT3 phosphorylation and nuclear localization of pSTAT3 without affecting other signaling molecules including Akt, STAT1, JAK2 or ERK1/2 phosphorylation. Functional analysis showed that MNS1 compounds induced apoptosis and decrease tumor migration. The anti-tumor effects extended into a murine pHGG (diffuse intrinsic pontine glioma) patient derived xenograft, and systemic toxicity was not evident during dose escalation in mice. These results support further development of STAT3 inhibitors for both pediatric and adult HGG.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , Glioma/pathology , Pyrazoles/chemistry , Pyrazoles/pharmacology , STAT3 Transcription Factor/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Apoptosis , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Proliferation , Female , Glioma/drug therapy , Glioma/metabolism , Humans , Mice , Mice, Nude , Phosphorylation , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
Front Oncol ; 9: 92, 2019.
Article in English | MEDLINE | ID: mdl-30873381

ABSTRACT

Diffuse Midline Gliomas with Histone 3-Lysine-27-Methionine (H3K27M) mutation constitute the majority of Diffuse Intrinsic Pontine Glioma (DIPG), which is the most aggressive form of pediatric glioma with a dire prognosis. DIPG are lethal tumors found in younger children with a median survival <1 year from diagnosis. Discovery of the characteristic H3K27M mutations offers opportunity and hope for development of targeted therapies for this deadly disease. The H3K27M mutation, likely through epigenetic alterations in specific H3 lysine trimethylation levels and subsequent gene expression, plays a significant role in pathogenesis of DIPG. Animal models accurately depicting molecular characteristics of H3K27M DIPG are important to elucidate underlying pathologic events and for preclinical drug evaluation. Here we review the past and present DIPG models and describe our efforts developing patient derived cell lines and xenografts from pretreated surgical specimens. Pre-treated surgical samples retain the characteristic genomic and phenotypic hallmarks of DIPG and establish orthotopic tumors in the mouse brainstem that recapitulate radiographic and morphological features of the original human DIPG tumor. These models that contain the H3K27M mutation constitute a valuable tool to further study this devastating disease and ultimately may uncover novel therapeutic vulnerabilities.

15.
Sci Rep ; 8(1): 14110, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30237409

ABSTRACT

Vascular dysfunction and insulin resistance (IR) are associated with obstructive sleep apnea (OSA), which is characterized by frequent episodes of nocturnal intermittent hypoxia (IH). While it is recognized that the balance between vasoconstrictive (endothelin-1) and vasodilatory molecules (nitric oxide, NO) determine vascular profile, molecular mechanisms contributing to vascular dysfunction and IR in OSA are not completely understood. Caveolin-1 is a membrane protein which regulates endothelial nitric oxide synthase (eNOS) activity which is responsible for NO generation and cellular insulin-signaling. Hence, we examined the effects of IH on caveolin-1, eNOS, and endothelin-1 in human coronary artery endothelial cells in the context of IR. Chronic 3-day IH exposure up-regulated caveolin-1 and endothelin-1 expression while reducing NO. Also, IH altered insulin-mediated activation of AKT but not ERK resulting in increased endothelin-1 transcription. Similarly, caveolin-1 overexpression attenuated basal and insulin-stimulated NO synthesis along with impaired insulin-dependent activation of AKT and eNOS, with no effect on insulin-stimulated ERK1/2 phosphorylation and endothelin-1 transcription. Our data suggest that IH contributes to a vasoconstrictive profile and to pathway-selective vascular IR, whereby insulin potentiates ET-1 expression. Moreover, IH may partly mediate its effects on NO and insulin-signaling via upregulating caveolin-1 expression.


Subject(s)
Cell Hypoxia/physiology , Endothelial Cells/metabolism , Insulin/pharmacology , Signal Transduction/physiology , Caveolin 1/metabolism , Cells, Cultured , Endothelial Cells/drug effects , Endothelin-1/metabolism , Humans , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
16.
PLoS One ; 12(6): e0179012, 2017.
Article in English | MEDLINE | ID: mdl-28666020

ABSTRACT

Glioblastoma is the most common primary tumor of the brain and has few long-term survivors. The local and systemic immunosuppressive environment created by glioblastoma allows it to evade immunosurveillance. Myeloid-derived suppressor cells (MDSCs) are a critical component of this immunosuppression. Understanding mechanisms of MDSC formation and function are key to developing effective immunotherapies. In this study, we developed a novel model to reliably generate human MDSCs from healthy-donor CD14+ monocytes by culture in human glioma-conditioned media. Monocytic MDSC frequency was assessed by flow cytometry and confocal microscopy. The resulting MDSCs robustly inhibited T cell proliferation. A cytokine array identified multiple components of the GCM potentially contributing to MDSC generation, including Monocyte Chemoattractive Protein-1, interleukin-6, interleukin-8, and Macrophage Migration Inhibitory Factor (MIF). Of these, Macrophage Migration Inhibitory Factor is a particularly attractive therapeutic target as sulforaphane, a naturally occurring MIF inhibitor derived from broccoli sprouts, has excellent oral bioavailability. Sulforaphane inhibits the transformation of normal monocytes to MDSCs by glioma-conditioned media in vitro at pharmacologically relevant concentrations that are non-toxic to normal leukocytes. This is associated with a corresponding increase in mature dendritic cells. Interestingly, sulforaphane treatment had similar pro-inflammatory effects on normal monocytes in fresh media but specifically increased immature dendritic cells. Thus, we have used a simple in vitro model system to identify a novel contributor to glioblastoma immunosuppression for which a natural inhibitor exists that increases mature dendritic cell development at the expense of myeloid-derived suppressor cells when normal monocytes are exposed to glioma conditioned media.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Isothiocyanates/pharmacology , Myeloid-Derived Suppressor Cells/drug effects , Brain Neoplasms/immunology , CD11b Antigen/immunology , Cell Hypoxia , Cell Line, Tumor , Culture Media, Conditioned , Fucosyltransferases/immunology , Glioblastoma/immunology , Humans , Lewis X Antigen/immunology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/pathology , Sulfoxides
17.
Neuro Oncol ; 17(7): 978-91, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25537019

ABSTRACT

BACKGROUND: Patients with glioblastoma multiforme (GBM) exhibit marked intratumoral and systemic immunosuppression. GBM is heavily infiltrated with monocytic cells. Monocytes contacting GBM cells develop features of immunosuppressive myeloid-derived suppressor cells (MDSCs), which are elevated in GBM patients. Therefore, we hypothesized that circulating MDSC levels could be raised in vivo by increasing glioma-associated macrophages. METHODS: GL261-luciferase glioma was implanted intracranially in C57BL/6 mice with or without additional normal syngeneic CD11b+ monocytes. Tumor growth and intratumoral and systemic MDSC (CD11b+/Gr-1+) levels were determined. Green fluorescent protein (GFP)-transgenic monocytes were coinjected intracranially with GL261-luciferase cells. GFP+ cell frequency among splenic and bone marrow MDSCs was determined. Impact of increased MDSC's on spontaneous immune responses to tumor cells expressing a model antigen (ovalbumin [OVA]) was determined. RESULTS: Tumors grew faster and MDSC's were increased in tumor, spleen, and bone marrow in mice receiving GL261-Luc plus monocytes. Many (30%-50%) systemic MDSC's were GFP+ in mice receiving intracranial tumor plus GFP-transgenic monocytes, suggesting that they originated from glioma-associated monocytes. Tumor-infiltrating OVA-specific CD8+ T cells were markedly reduced in mice receiving GL261-OVA and monocytes compared with mice receiving GL261-OVA alone. CONCLUSIONS: Increasing glioma-associated macrophages in intracranial GL261 glioma decreases survival and markedly increases intratumoral and systemic MDSC's, many of which originate directly from glioma-associated macrophages. This is associated with decreased spontaneous immune responses to a model antigen. To our knowledge, this is the first evidence in cancer that systemic MDSC's can arise directly from normal monocytes that have undergone intratumoral immunosuppressive education.


Subject(s)
Brain Neoplasms/physiopathology , Glioma/physiopathology , Myeloid Cells/physiology , Animals , Bone Marrow Cells/physiology , Brain Neoplasms/immunology , Cell Line, Tumor , Disease Models, Animal , Glioma/immunology , Mice , Mice, Inbred C57BL , Myeloid Cells/immunology , Spleen/physiopathology
18.
J Neurooncol ; 111(1): 11-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23086431

ABSTRACT

Positron emission tomography (PET) imaging with the amino acid tracer 6-(18)F-fluoro-L-3,4-dihydroxy-phenylalanine ((18)F-DOPA) may provide better spatial and functional information in human gliomas than CT or MRI alone. The L-type amino acid transporter 1 (LAT1) is responsible for membrane transport of large neutral amino acids in normal cells. This study assessed the relationship between LAT1 expression and (18)F-DOPA uptake in human astrocytomas. Endogenous LAT1 expression was measured in established glioblastoma (GBM) cell lines and primary GBM xenografts using Western blotting and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Uptake of (18)F-DOPA was approximated in vitro using (3)H-L-DOPA as an analog. Uptake of (3)H-L-DOPA was assessed in cells expressing LAT1 shRNA or LAT1 siRNA and compared to non-targeted (NT) control shRNA or siRNA sequences, respectively. To demonstrate the clinical relevance of these findings, LAT1 immunofluorescence staining was compared with corresponding regions of (18)F-DOPA PET uptake in patients with newly diagnosed astrocytomas. LAT1 mRNA and protein expression varies in GBM, and the extent of (3)H-L-DOPA uptake was positively correlated with endogenous LAT1 expression. Stable shRNA-mediated LAT1 knockdown in T98 and GBM28 reduced (3)H-L-DOPA uptake relative to NT shRNA by 57 (P < 0.0001) and 52 % (P < 0.001), respectively. Transient siRNA-mediated LAT1 knockdown in T98 reduced (3)H-L-DOPA uptake relative to NT siRNA up to 68 % (P < 0.01). In clinical samples, LAT1 expression positively correlated with (18)F-DOPA PET uptake (P = 0.04). Expression of LAT1 is strongly associated with (3)H-L-DOPA uptake in vitro and (18)F-DOPA uptake in patient biopsy samples. These results define LAT1 as a key determinant of (18)F-DOPA accumulation in GBM.


Subject(s)
Brain Neoplasms/metabolism , Dihydroxyphenylalanine/analogs & derivatives , Fluorine Radioisotopes , Glioma/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism , Animals , Biological Transport , Blotting, Western , Brain Neoplasms/pathology , Dihydroxyphenylalanine/pharmacokinetics , Fluorescent Antibody Technique , Glioma/pathology , Humans , Immunoenzyme Techniques , Large Neutral Amino Acid-Transporter 1/chemistry , Large Neutral Amino Acid-Transporter 1/genetics , Mice , Neoplasm Grading , Positron-Emission Tomography , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
19.
Circ Res ; 111(5): 599-603, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22730441

ABSTRACT

RATIONALE: The link between obesity, hyperleptinemia, and development of cardiovascular disease is not completely understood. Increases in leptin have been shown to impair leptin signaling via caveolin-1-dependent mechanisms. However, the role of hyperleptinemia versus impaired leptin signaling in adipose tissue is not known. OBJECTIVE: To determine the presence and significance of leptin-dependent increases in adipose tissue caveolin-1 expression in humans. METHODS AND RESULTS: We designed a longitudinal study to investigate the effects of increases in leptin on adipose tissue caveolin-1 expression during weight gain in humans. Ten volunteers underwent 8 weeks of overfeeding, during which they gained an average weight of 4.1±1.4 kg, with leptin increases from 7±3.8 to 12±5.7 ng/mL. Weight gain also resulted in changes in adipose tissue caveolin-1 expression, which correlated with increases in leptin (rho=0.79, P=0.01). In cultured human white preadipocytes, leptin increased caveolin-1 expression, which in turn impaired leptin cellular signaling. Functionally, leptin decreased lipid accumulation in differentiating human white preadipocytes, which was prevented by caveolin-1 overexpression. Further, leptin decreased perilipin and fatty acid synthase expression, which play an important role in lipid storage and biogenesis. CONCLUSIONS: In healthy humans, increases in leptin, as seen with modest weight gain, may increase caveolin-1 expression in adipose tissue. Increased caveolin-1 expression in turn impairs leptin signaling and attenuates leptin-dependent lowering of intracellular lipid accumulation. Our study suggests a leptin-dependent feedback mechanism that may be essential to facilitate adipocyte lipid storage during weight gain.


Subject(s)
Adipose Tissue, White/metabolism , Caveolin 1/metabolism , Hyperphagia/metabolism , Leptin/metabolism , Signal Transduction/physiology , Weight Gain/physiology , Adipocytes, White/metabolism , Adipose Tissue, White/cytology , Adult , Cells, Cultured , Feedback, Physiological/physiology , Female , Humans , Lipid Metabolism/physiology , Longitudinal Studies , Male , Stem Cells/metabolism , Young Adult
20.
Atherosclerosis ; 217(2): 499-502, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21074769

ABSTRACT

OBJECTIVE: To determine the role of hyperleptinemia on caveolin-1 expression and leptin signaling. METHODS: Endothelial cells are critical to atherosclerosis development; therefore we investigated hyperleptinemia in cultured vascular endothelial cells. Dose-dependent effect of leptin on caveolin-1 expression was determined by Western blot analysis. Also, the consequence of increased caveolin-1 expression on leptin signaling was investigated by adenovirus mediated caveolin-1 overexpression. The effect of increased caveolin-1 expression on leptin-dependent activation of ERK1/2 and eNOS was determined by Western blot analysis. RESULTS: Leptin upregulates caveolin-1 protein expression in a dose dependent manner and increased caveolin-1 expression impairs leptin signaling. CONCLUSIONS: Leptin increases caveolin-1 protein expression which impairs leptin signaling in vascular endothelial cells. Our study identifies an additional leptin mediated proatherogenic mechanism and a novel caveolin-1 dependent leptin feedback mechanism which may have implications for development of peripheral leptin resistance in the endothelium.


Subject(s)
Atherosclerosis/etiology , Caveolin 1/metabolism , Endothelial Cells/metabolism , Leptin/metabolism , Adenoviridae/genetics , Atherosclerosis/metabolism , Blotting, Western , Caveolin 1/genetics , Cells, Cultured , Genetic Vectors , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Nitric Oxide Synthase Type III/metabolism , Signal Transduction , Time Factors , Transfection , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...