Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev B ; 103(6)2021 Feb.
Article in English | MEDLINE | ID: mdl-34409242

ABSTRACT

A micromagnetic study is carried out on the role of using topology to stabilize different magnetic textures, such as a vortex or an anti-vortex state, in a magnetic heterostructure consisting of a Permalloy disk coupled to a set of nanomagnetic bars. The topological boundary condition is set by the stray field contributions of the nanomagnet bars and thus by their magnetization configuration, and can be described by a discretized winding number that will be matched by the winding number of the topological state set in the disk. The lowest number of nanomagnets that defines a suitable boundary is four, and we identify a critical internanomagnet angle of 225° between two nanomagnets, at which the boundary fails because the winding number of the nanomagnet configuration no longer controls that of the disk magnetization. The boundary also fails when the disk-nanomagnets separation is > 50 nm and for disk diameters > 480 nm. Finally, we provide preliminary experimental evidence from magnetic force microscopy studies in which we demonstrate that an energetically unstable, anti-vortex-like structure can indeed be stabilized in a Permalloy disk, provided that the appropriate topological conditions are set.

2.
Sci Rep ; 6: 34384, 2016 10 03.
Article in English | MEDLINE | ID: mdl-27694973

ABSTRACT

Artificial spin ice lattices have emerged as model systems for studying magnetic frustration in recent years. Most work to date has looked at periodic artificial spin ice lattices. In this paper, we observe frustration effects in quasicrystal artificial spin ice lattices that lack translational symmetry and contain vertices with different numbers of interacting elements. We find that as the lattice state changes following demagnetizing and annealing, specific vertex motifs retain low-energy configurations, which excites other motifs into higher energy configurations. Additionally, we find that unlike the magnetization reversal process for periodic artificial spin ice lattices, which occurs through 1D avalanches, quasicrystal lattices undergo reversal through a dendritic 2D avalanche mechanism.

3.
Sci Rep ; 6: 31248, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27507196

ABSTRACT

Topologically non-trivial spin textures form a fundamental paradigm in solid-state physics and present unique opportunities to explore exciting phenomena such as the topological Hall effect. One such texture is a skyrmion, in which the spins can be mapped to point in all directions wrapping around a sphere. Understanding the formation of these spin textures, and their energetic stability, is crucial in order to control their behavior. In this work, we report on controlling the perpendicular anisotropy of continuous Co/Pt multilayer films with ion irradiation to form unique spin configurations of artificial skyrmions and antiskyrmions that are stabilized by their demagnetization energy. We elucidate their behavior using aberration-corrected Lorentz transmission electron microscopy. We also discuss the energetic stability of these structures studied through in-situ magnetizing experiments performed at room temperature, combined with micromagnetic simulations that successfully reproduce the spin textures and behavior. This research offers new opportunities towards creation of artificial skyrmion or antiskyrmion lattices that can be used to investigate not only fundamental properties of their interaction with electron currents but also technological applications such as artificial magnonic crystals.

4.
Ultramicroscopy ; 139: 5-12, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24513573

ABSTRACT

We introduce a new approach for the separation of the electrostatic and magnetic components of the electron wave phase shift, based on the transport-of-intensity equation (TIE) formalism. We derive two separate TIE-like equations, one for each of the phase shift components. We use experimental results on FeCoB and Permalloy patterned islands to illustrate how the magnetic and electrostatic longitudinal derivatives can be computed. The main advantage of this new approach is the fact that the differences in the power spectra of the two phase components (electrostatic phase shifts often have significant power in the higher frequencies) can be accommodated by the selection of two different Tikhonov regularization parameters for the two phase reconstructions. The extra computational demands of the method are more than compensated by the improved phase reconstruction results.


Subject(s)
Magnetic Phenomena , Microscopy/instrumentation , Microscopy/methods , Static Electricity , Image Processing, Computer-Assisted/methods
5.
Phys Rev Lett ; 108(6): 067205, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22401118

ABSTRACT

Confined magnetic thin films are known to exhibit a variety of fascinating topological spin states such as Skyrmions, vortices, and antivortices. Such topological excitations are fundamentally important to our understanding of quantum critical phenomenon and related phase transitions. Here we report on the direct observation of an unconventional topological spin state and its behavior in antiferromagnetically coupled NiFe discs at room temperature. The observed spin structure is similar to the theoretically predicted merons which have not yet been observed directly. We have used in situ Lorentz microscopy magnetizing experiments combined with micromagnetic simulations to follow the stability and the behavior of the meron state. The work presented in this paper will open new opportunities for direct experimental investigation of various topological states that can provide insights into the fundamental physics of their interactions.

7.
Ultramicroscopy ; 109(3): 264-7, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19110377

ABSTRACT

Nanoscale confinement of the magnetization in a magnetic element often results in the creation of a vortex structure. The vortex equilibrium state is characterized by the curling of the in-plane magnetization (chirality) and an out-of-plane core magnetization. The polarity of the vortex core can point up or down, independent of the chirality, and, thus, magnetic elements with a vortex core are interesting as four-state logic elements. We present an easy-to-use, quantitative method for the determination of both chirality and polarity from a single Fresnel image. This method offers direct evidence of the three-dimensional structure of a magnetic vortex and has significant advantages over the more complex methods currently in use.

8.
Ultramicroscopy ; 108(12): 1529-35, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18556122

ABSTRACT

This paper describes a novel technique for studying structure-transport correlations in nanoscale multilayer thin films. Here, local current-voltage characteristics from simplified magnetic tunnel junctions are measured in situ on cross-sectional transmission electron microscopy (TEM) samples and correlated directly with TEM images of the microstructure at the tunneling site. It is found that local variations in barrier properties can be detected by a point probe method, and that the tunneling barrier height and width can be extracted.

9.
Microsc Microanal ; 10(3): 366-72, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15233855

ABSTRACT

It is well established that the response of devices based on the giant magnetoresistance (GMR) effect depends critically on film microstructure, with parameters such as interfacial abruptness, the roughness and waviness of the layers, and grain size being crucial. Such devices have applications in information storage systems, and are therefore of great technological interest as well as being of fundamental scientific interest. The layers must be studied at high spatial resolution if the microstructural parameters are to be characterized with sufficient detail to enable the effects of fabrication conditions on properties to be understood, and the techniques of high resolution electron microscopy, transmission electron microscopy chemical mapping, and atom probe microanalysis are ideally suited. This article describes the application of these techniques to a range of materials including spin valves, spin tunnel junctions, and GMR multilayers.


Subject(s)
Alloys , Computer Storage Devices , Information Storage and Retrieval , Cobalt , Copper , Electron Probe Microanalysis , Iron , Magnetics , Microscopy, Electron, Scanning , Nanotechnology , Nickel
10.
J Microsc ; 201(2): 250-255, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11207927

ABSTRACT

Pulsed laser deposition in vacuum has been used to develop metal-oxide nanocomposite films with well controlled structural quality. Results for the copper-aluminium oxide (Cu:Al2O3) system are used to illustrate the main morphological and structural features of these films. High resolution transmission electron microscopy (TEM) analysis shows that the films consist of Cu nanocrystals with average dimensions that can be controlled between 2 nm and 10 nm embedded in an amorphous Al2O3 matrix. It is observed that the in-plane shape of the nanocrystals evolves from circular to elongated, and the number of nanocrystals per unit area decreases as their size increases. This evolution is explained in terms of nucleation at the substrate surface and coalescence during the later stages of growth. The thermal stability of the films has been studied by in situ TEM annealing and no transformation could be observed up to about 800 degrees C when partial crystallization of the Al2O3 starts.

11.
Science ; 233(4766): 872-5, 1986 Aug 22.
Article in English | MEDLINE | ID: mdl-17752214

ABSTRACT

Small metal particles (<5 nanometers), which are widely used in catalysis, have physical and chemical properties that are markedly different from those of the bulk metal. The differences are related to crystal structure, and it is therefore significant that structral rearrangements in small particles have been observed in real time by using high-resolution electron microscopy. A detailed investigation at the atomic level has been made of the factors affecting the dynamic activity of small gold crystals that are supported on thin films of amorphous carbon, silicon, and germanium. The rate of activity depends mainly on the current density of the incident electron beam and the degree of contact of the particle with the substrate, but this rate decreases rapidly as the particle size is increased. The activity of the particles is very similar on either carbon or silicon, but it is generally less marked on germanium because of increased contact between the particle and the substrate. The electron beam effectively heats the particles, and it appears that their dynamic behavior depends on their thermal contact with the substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...