Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339141

ABSTRACT

Chemotherapy is still one of the main therapeutic approaches in cancer therapy. Nevertheless, its poor selectivity causes severe toxic side effects that, together with the development of drug resistance in tumor cells, results in a limitation for its application. Tumor-targeted drug delivery is a possible choice to overcome these drawbacks. As well as monoclonal antibodies, peptides are promising targeting moieties for drug delivery. However, the development of peptide-drug conjugates (PDCs) is still a big challenge. The main reason is that the conjugates have to be stable in circulation, but the drug or its active metabolite should be released efficiently in the tumor cells. For this purpose, suitable linker systems are needed that connect the drug molecule with the homing peptide. The applied linker systems are commonly categorized as cleavable and non-cleavable linkers. Both the groups possess advantages and disadvantages that are summarized briefly in this manuscript. Moreover, in this review paper, we highlight the benefit of oxime-linked anthracycline-peptide conjugates in the development of PDCs. For instance, straightforward synthesis as well as a conjugation reaction proceed in excellent yields, and the autofluorescence of anthracyclines provides a good tool to select the appropriate homing peptides. Furthermore, we demonstrate that these conjugates can be used properly in in vivo studies. The results indicate that the oxime-linked PDCs are potential candidates for targeted tumor therapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Daunorubicin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Oximes/therapeutic use , Peptides/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Drug Delivery Systems/methods , Pharmaceutical Preparations/metabolism
2.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834514

ABSTRACT

The blood-brain barrier (BBB) is a semipermeable system, and, therefore, most of the active substances are poorly transported through this barrier, resulting in decreased therapeutic effects. Angiopep-2 (TFFYGGSRGKRNNFKTEEY) is a peptide ligand of low-density lipoprotein receptor-related protein-1 (LRP1), which can cross the BBB via receptor-mediated transcytosis and simultaneously target glioblastomas. Angiopep-2 contains three amino groups that have previously been used to produce drug-peptide conjugates, although the role and importance of each position have not yet been investigated. Thus, we studied the number and position of drug molecules in Angiopep-2 based conjugates. Conjugates containing one, two, and three daunomycin molecules conjugated via oxime linkage in all possible variations were prepared. The in vitro cytostatic effect and cellular uptake of the conjugates were investigated on U87 human glioblastoma cells. Degradation studies in the presence of rat liver lysosomal homogenates were also performed in order for us to better understand the structure-activity relationship and to determine the smallest metabolites. Conjugates with the best cytostatic effects had a drug molecule at the N-terminus. We demonstrated that the increasing number of drug molecules does not necessarily increase the efficacy of the conjugates, and proved that modification of the different conjugation sites results in differing biological effectiveness.


Subject(s)
Cytostatic Agents , Glioblastoma , Rats , Animals , Humans , Daunorubicin/metabolism , Peptides/chemistry , Blood-Brain Barrier/metabolism , Glioblastoma/metabolism , Drug Delivery Systems/methods , Cell Line, Tumor
3.
Int J Mol Sci ; 22(4)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562082

ABSTRACT

The use of peptide-drug conjugates has generated wide interest as targeted antitumor therapeutics. The anthracycline antibiotic, daunomycin, is a widely used anticancer agent and it is often conjugated to different tumor homing peptides. However, comprehensive analytical characterization of these conjugates via tandem mass spectrometry (MS/MS) is challenging due to the lability of the O-glycosidic bond and the appearance of MS/MS fragment ions with little structural information. Therefore, we aimed to investigate the optimal fragmentation conditions that suppress the prevalent dissociation of the anthracycline drug and provide good sequence coverage. In this study, we comprehensively compared the performance of common fragmentation techniques, such as higher energy collisional dissociation (HCD), electron transfer dissociation (ETD), electron-transfer higher energy collisional dissociation (EThcD) and matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) activation methods for the structural identification of synthetic daunomycin-peptide conjugates by high-resolution tandem mass spectrometry. Our results showed that peptide backbone fragmentation was inhibited by applying electron-based dissociation methods to conjugates, most possibly due to the "electron predator" effect of the daunomycin. We found that efficient HCD fragmentation was largely influenced by several factors, such as amino acid sequences, charge states and HCD energy. High energy HCD and MALDI-TOF/TOF combined with collision induced dissociation (CID) mode are the methods of choice to unambiguously assign the sequence, localize different conjugation sites and differentiate conjugate isomers.


Subject(s)
Daunorubicin/analogs & derivatives , Daunorubicin/metabolism , Peptides/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Daunorubicin/chemistry , Electron Transport , Peptides/chemistry , Protein Conformation
4.
Soft Matter ; 16(24): 5759-5769, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32530018

ABSTRACT

Numerous peptide-drug conjugates have been developed over the years to enhance the specificity and selectivity of chemotherapeutic agents for tumour cells. In our present work, epidermal growth factor receptor targeting drug-peptide conjugates were prepared using GE11 and D4 peptides. To ensure the drug release, the cathepsin B labile GFLG spacer was incorporated between the targeting peptide and the drug molecule (daunomycin), which significantly increased the hydrophobicity and thereby decreased the water solubility of the conjugates. To overcome the solubility problem, drug-peptide-polymer conjugates with systematic structural variations were prepared, by linking poly(ethylene glycol) (PEG) or a well-defined amino-monofunctional hyperbranched polyglycerol (HbPG) directly or via a pentaglycine spacer to the targeting peptides. All the drug-peptide-polymer conjugates were water-soluble as confirmed by turbidimetric measurements. The results of the in vitro cell viability and cellular uptake measurements on HT-29 human colon adenocarcinoma cells proved that the HbPG and the PEG highly influenced the biological activity. The conjugation of the hydrophilic polymer resulted in the amphiphilic character of the conjugates, which led to self-aggregation and nanoparticle formation that decreased the cellular uptake above a specific aggregation concentration. On the other hand, the hydrodynamic volume and the different polymer chain topology of the linear PEG and the compact hyperbranched HbPG also played an important role in the biological activity. Therefore, in similar systems, the investigation of the colloidal properties is inevitable for the better understanding of the biological activity, which can reveal the structure-activity relationship of amphiphilic drug-peptide-polymer conjugates for efficient tumour targeting.


Subject(s)
Antibiotics, Antineoplastic , Daunorubicin , Glycerol , Oligopeptides , Peptides , Polyethylene Glycols , Polymers , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Daunorubicin/chemistry , Daunorubicin/pharmacology , ErbB Receptors , Glycerol/chemistry , Glycerol/pharmacology , Humans , Oligopeptides/chemistry , Oligopeptides/pharmacology , Peptides/chemistry , Peptides/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Polymers/chemistry , Polymers/pharmacology
5.
Magy Onkol ; 63(4): 290-300, 2019 12 09.
Article in Hungarian | MEDLINE | ID: mdl-31821384

ABSTRACT

In case of cancers with high mortality rate and lacking efficient medication there is a huge need of new, innovative treatments. Targeted tumor therapy, a real breakthrough in this field, is based on the concept that the antitumor agent is linked to a targeting molecule (e.g. peptide) specifically recognizing receptors or antigens that are tumor specific or overexpressed by tumor cells. The efficiency of this conjugate can be influenced by several factors. Among these, the structure of the targeting device, the type and number of the antitumor drug, its position in the conjugate and the chemical bonding of the drug to the targeting molecule are all important features that can determine receptor affinity and cellular uptake, and also the release and the cellular localization of the free drug or its active metabolite. Our goal in the framework of the grant NVKP_16-1-2016-0036 was to generate conjugates against cancers with high mortality rate. Through the below described studies, we introduce the course of the research process through which conjugates are optimized in order to develop more efficient drug candidates.


Subject(s)
Neoplasms , Antineoplastic Agents , Cell Line, Tumor , Humans , Molecular Targeted Therapy , Peptides
6.
Int J Mol Sci ; 20(22)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717403

ABSTRACT

Several promising anti-cancer drug-GnRH (gonadotropin-releasing hormone) conjugates have been developed in the last two decades, although none of them have been approved for clinical use yet. Crizotinib is an effective multi-target kinase inhibitor, approved against anaplastic lymphoma kinase (ALK)- or ROS proto-oncogene 1 (ROS-1)-positive non-small cell lung carcinoma (NSCLC); however, its application is accompanied by serious side effects. In order to deliver crizotinib selectively into the tumor cells, we synthesized novel crizotinib analogues and conjugated them to a [d-Lys6]-GnRH-I targeting peptide. Our most prominent crizotinib-GnRH conjugates, the amide-bond-containing [d-Lys6(crizotinib*)]-GnRH-I and the ester-bond-containing [d-Lys6(MJ55*)]-GnRH-I, were able to bind to GnRH-receptor (GnRHR) and exert a potent c-Met kinase inhibitory effect. The efficacy of compounds was tested on the MET-amplified and GnRHR-expressing EBC-1 NSCLC cells. In vitro pharmacological profiling led to the conclusion that that crizotinib-GnRH conjugates are transported directly into lysosomes, where the membrane permeability of crizotinib is diminished. As a consequence of GnRHR-mediated endocytosis, GnRH-conjugated crizotinib bypasses its molecular targets-the ATP-binding site of RTKs- and is sequestered in the lysosomes. These results explained the lower efficacy of crizotinib-GnRH conjugates in EBC-1 cells, and led to the conclusion that drug escape from the lysosomes is a major challenge in the development of clinically relevant anti-cancer drug-GnRH conjugates.


Subject(s)
Crizotinib/pharmacology , Drug Delivery Systems , Gonadotropin-Releasing Hormone/pharmacology , Lysosomes/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Cell Survival , Crizotinib/chemical synthesis , Crizotinib/chemistry , Drug Design , Fibroblasts/metabolism , Galectins/metabolism , Gonadotropin-Releasing Hormone/chemical synthesis , Gonadotropin-Releasing Hormone/chemistry , Humans , Hydrogen-Ion Concentration , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Models, Biological , Proto-Oncogene Mas , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Receptors, LHRH/metabolism , Skin/cytology
7.
Int J Mol Sci ; 20(20)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614426

ABSTRACT

Head and neck squamous cell carcinomas (HNSCC) have a high mortality rate, although several potential therapeutic targets have already been identified. Gonadotropin-releasing hormone receptor (GnRH-R) expression is less studied in head and neck cancers, hence, we investigated the therapeutic relevance of GnRH-R targeting in HNSCC patients. Our results indicate that half of the patient-derived samples showed high GnRH-R expression, which was associated with worse prognosis, making this receptor a promising target for GnRH-based drug delivery. Photodynamic therapy is a clinically approved treatment for HNSCC, and the efficacy and selectivity may be enhanced by the covalent conjugation of the photosensitizer to a GnRH-R targeting peptide. Several native ligands, gonadotropin-releasing hormone (GnRH) isoforms, are known to target GnRH-R effectively. Therefore, different 4Lys(Bu) modified GnRH analogs were designed and conjugated to protoporphyrin IX. The receptor binding potency of the novel conjugates was measured on human pituitary and human prostate cancer cells, indicating only slightly lower GnRH-R affinity than the peptides. The in vitro cell viability inhibition was tested on Detroit-562 human pharyngeal carcinoma cells that express GnRH-R in high levels, and the results showed that all conjugates were more effective than the free protoporphyrin IX.


Subject(s)
Head and Neck Neoplasms/metabolism , Peptides/administration & dosage , Protoporphyrins/chemistry , Receptors, LHRH/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Up-Regulation , Adult , Aged , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Gonadotropin-Releasing Hormone/analogs & derivatives , Head and Neck Neoplasms/drug therapy , Humans , Male , Middle Aged , Peptides/chemistry , Peptides/pharmacology , Photochemotherapy , Prognosis , Squamous Cell Carcinoma of Head and Neck/drug therapy , Survival Analysis , Tissue Array Analysis , Up-Regulation/drug effects
8.
Molecules ; 24(16)2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31426442

ABSTRACT

Peptide-based small molecule drug conjugates for targeted tumor therapy are currently in the focus of intensive research. Anthracyclines, like daunomycin, are commonly used anticancer drug molecules and are also often applied in peptide-drug conjugates. However, lability of the O-glycosidic bond during electrospray ionization mass spectrometric analysis hinders the analytical characterization of the constructs. "Overprotonation" can occur if daunomycin is linked to positively charged peptide carriers, like tuftsin derivatives. In these molecules, the high number of positive charges enhances the in-source fragmentation significantly, leading to complex mass spectra composed of mainly fragment ions. Therefore, we investigated different novel tuftsin-daunomycin conjugates to find an appropriate condition for mass spectrometric detection. Our results showed that shifting the charge states to lower charges helped to keep ions intact. In this way, a clear spectrum could be obtained containing intact protonated molecules only. Shifting of the protonation states to lower charges could be achieved with the use of appropriate neutral volatile buffers and with tuning the ion source parameters.


Subject(s)
Antibiotics, Antineoplastic/analysis , Daunorubicin/analysis , Glycoconjugates/analysis , Immunologic Factors/analysis , Tuftsin/analysis , Antibiotics, Antineoplastic/chemistry , Daunorubicin/chemistry , Glycoconjugates/chemistry , Humans , Immunologic Factors/chemistry , Molecular Structure , Protons , Spectrometry, Mass, Electrospray Ionization , Static Electricity , Tuftsin/chemistry
9.
ACS Omega ; 3(11): 14726-14731, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30533574

ABSTRACT

Traditional chemotherapeutics used in cancer therapy do not preferentially accumulate in tumor tissues. The conjugation to delivery vehicles like antibodies or small molecules has been proposed as a strategy to increase the tumor uptake and improve the therapeutic window of these drugs. Here, we report the synthesis and the biological evaluation of a novel small molecule-drug conjugate (SMDC) comprising a high-affinity bidentate acetazolamide derivative, targeting carbonic anhydrase IX (CAIX), and cryptophycin, a potent microtubule destabilizer. The biological activity of the novel SMDC was evaluated in vitro, measuring binding to the CAIX antigen by surface plasmon resonance and cytotoxicity against SKRC-52 cells. In vivo studies showed a delayed growth of tumors in nude mice bearing SKRC-52 renal cell carcinomas.

11.
PLoS One ; 9(4): e94041, 2014.
Article in English | MEDLINE | ID: mdl-24718594

ABSTRACT

Targeted delivery of chemotherapeutic agents is a new approach for the treatment of cancer, which provides increased selectivity and decreased systemic toxicity. We have recently developed a promising drug delivery system, in which the anticancer drug daunorubicin (Dau) was attached via oxime bond to a gonadotropin-releasing hormone-III (GnRH-III) derivative used as a targeting moiety (Glp-His-Trp-Lys(Ac)-His-Asp-Trp-Lys(Da  = Aoa)-Pro-Gly-NH2; Glp = pyroglutamic acid, Ac = acetyl; Aoa = aminooxyacetyl). This bioconjugate exerted in vitro cytostatic/cytotoxic effect on human breast, prostate and colon cancer cells, as well as significant in vivo tumor growth inhibitory effect on colon carcinoma bearing mice. In our previous studies, H-Lys(Dau = Aoa)-OH was identified as the smallest metabolite produced in the presence of rat liver lysosomal homogenate, which was able to bind to DNA in vitro. To get a deeper insight into the mechanism of action of the bioconjugate, changes in the protein expression profile of HT-29 human colon cancer cells after treatment with the bioconjugate or free daunorubicin were investigated by mass spectrometry-based proteomics. Our results indicate that several metabolism-related proteins, molecular chaperons and proteins involved in signaling are differently expressed after targeted chemotherapeutic treatment, leading to the conclusion that the bioconjugate exerts its cytotoxic action by interfering with multiple intracellular processes.


Subject(s)
Antineoplastic Agents/pharmacology , Cytotoxins/pharmacology , Daunorubicin/analogs & derivatives , Gene Expression Regulation, Neoplastic/drug effects , Gonadotropin-Releasing Hormone/analogs & derivatives , Neoplasm Proteins/biosynthesis , Animals , Daunorubicin/chemical synthesis , Daunorubicin/pharmacology , Drug Screening Assays, Antitumor , Electrophoresis, Gel, Two-Dimensional , Gonadotropin-Releasing Hormone/chemical synthesis , Gonadotropin-Releasing Hormone/pharmacology , HT29 Cells , Humans , Liver/enzymology , Lysosomes/enzymology , Molecular Structure , Neoplasm Proteins/genetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...