Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Hortic Res ; 11(7): uhae137, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988619

ABSTRACT

Fruit quality traits are major breeding targets in cultivated strawberry (Fragaria × ananassa). Taking into account the requirements of both growers and consumers when selecting high-quality cultivars is a real challenge. Here, we used a diversity panel enriched with unique European accessions and the 50 K FanaSNP array to highlight the evolution of strawberry diversity over the past 160 years, investigate the molecular basis of 12 major fruit quality traits by genome-wide association studies (GWAS), and provide genetic markers for breeding. Results show that considerable improvements of key breeding targets including fruit weight, firmness, composition, and appearance occurred simultaneously in European and American cultivars. Despite the high genetic diversity of our panel, we observed a drop in nucleotide diversity in certain chromosomal regions, revealing the impact of selection. GWAS identified 71 associations with 11 quality traits and, while validating known associations (firmness, sugar), highlighted the predominance of new quantitative trait locus (QTL), demonstrating the value of using untapped genetic resources. Three of the six selective sweeps detected are related to glossiness or skin resistance, two little-studied traits important for fruit attractiveness and, potentially, postharvest shelf life. Moreover, major QTL for firmness, glossiness, skin resistance, and susceptibility to bruising are found within a low diversity region of chromosome 3D. Stringent search for candidate genes underlying QTL uncovered strong candidates for fruit color, firmness, sugar and acid composition, glossiness, and skin resistance. Overall, our study provides a potential avenue for extending shelf life without compromising flavor and color as well as the genetic markers needed to achieve this goal.

2.
J Exp Bot ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938160

ABSTRACT

The flowering time (FT), which determines when fruits or seeds can be harvested, is subject to phenotypic plasticity, i.e. the ability of a genotype to display different phenotypes in response to environmental variations. Here, we investigated how the environment affects the genetic architecture of FT in cultivated strawberry (Fragaria ×ananassa) and modifies its QTL effects. To this end, we used a bi-parental segregating population grown for two years at widely divergent latitudes (5 European countries) and combined climatic variables with genomic data (Affymetrix® SNP array). Examination, using different phenological models, of the response of FT to photoperiod, temperature and global radiation, indicated that temperature is the main driver of FT in strawberry. We next characterized in the segregating population the phenotypic plasticity of FT by using three statistical approaches that generated plasticity parameters including reaction norm parameters. We detected 25 FT QTL summarized into 10 unique QTL. Mean values and plasticity parameters QTL were co-localized in three of them, including the major 6D_M QTL whose effect is strongly modulated by temperature. The design and validation of a genetic marker for the 6D_M QTL offers great potential for breeding programs, for example for selecting early-flowering strawberry varieties well adapted to different environmental conditions.

3.
Stem Cell Res ; 77: 103437, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723411

ABSTRACT

Human pluripotent stem cells (hiPSC) represent a unique opportunity to model lung development and chronic bronchial diseases. We generated a hiPSC line from a highly characterized healthy heavy smoker male donor free from emphysema or tobacco related disease. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using integration-free Sendai virus. The cell line had normal karyotype, expressed pluripotency hallmarks, and differentiated into the three primary germ layers. The reported UHOMi007-A iPSC line may be used as a control to model lung development, study human chronic bronchial diseases and drug testing.


Subject(s)
Induced Pluripotent Stem Cells , Leukocytes, Mononuclear , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Male , Cell Line , Cell Differentiation , Smokers , Cellular Reprogramming
4.
Int J Mol Sci ; 24(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569398

ABSTRACT

Airway-liquid interface cultures of primary epithelial cells and of induced pluripotent stem-cell-derived airway epithelial cells (ALI and iALI, respectively) are physiologically relevant models for respiratory virus infection studies because they can mimic the in vivo human bronchial epithelium. Here, we investigated gene expression profiles in human airway cultures (ALI and iALI models), infected or not with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using our own and publicly available bulk and single-cell transcriptome datasets. SARS-CoV-2 infection significantly increased the expression of interferon-stimulated genes (IFI44, IFIT1, IFIT3, IFI35, IRF9, MX1, OAS1, OAS3 and ISG15) and inflammatory genes (NFKBIA, CSF1, FOSL1, IL32 and CXCL10) by day 4 post-infection, indicating activation of the interferon and immune responses to the virus. Extracellular matrix genes (ITGB6, ITGB1 and GJA1) were also altered in infected cells. Single-cell RNA sequencing data revealed that SARS-CoV-2 infection damaged the respiratory epithelium, particularly mature ciliated cells. The expression of genes encoding intercellular communication and adhesion proteins was also deregulated, suggesting a mechanism to promote shedding of infected epithelial cells. These data demonstrate that ALI/iALI models help to explain the airway epithelium response to SARS-CoV-2 infection and are a key tool for developing COVID-19 treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/genetics , Transcriptome , Epithelial Cells , Epithelium , Interferons/genetics , Respiratory Mucosa
5.
Hortic Res ; 10(3): uhad006, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36938573

ABSTRACT

Strawberry (Fragaria × ananassa) fruits are an excellent source of L-ascorbic acid (AsA), a powerful antioxidant for plants and humans. Identifying the genetic components underlying AsA accumulation is crucial for enhancing strawberry nutritional quality. Here, we unravel the genetic architecture of AsA accumulation using an F1 population derived from parental lines 'Candonga' and 'Senga Sengana', adapted to distinct Southern and Northern European areas. To account for environmental effects, the F1 and parental lines were grown and phenotyped in five locations across Europe (France, Germany, Italy, Poland and Spain). Fruit AsA content displayed normal distribution typical of quantitative traits and ranged five-fold, with significant differences among genotypes and environments. AsA content in each country and the average in all of them was used in combination with 6,974 markers for quantitative trait locus (QTL) analysis. Environmentally stable QTLs for AsA content were detected in linkage group (LG) 3A, LG 5A, LG 5B, LG 6B and LG 7C. Candidate genes were identified within stable QTL intervals and expression analysis in lines with contrasting AsA content suggested that GDP-L-Galactose Phosphorylase FaGGP(3A), and the chloroplast-located AsA transporter gene FaPHT4;4(7C) might be the underlying genetic factors for QTLs on LG 3A and 7C, respectively. We show that recessive alleles of FaGGP(3A) inherited from both parental lines increase fruit AsA content. Furthermore, expression of FaGGP(3A) was two-fold higher in lines with high AsA. Markers here identified represent a useful resource for efficient selection of new strawberry cultivars with increased AsA content.

6.
Biomedicines ; 11(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36979719

ABSTRACT

(1) Background: We have previously shown that sputum rheology can discriminate between patients with COPD and other muco-obstructive lung diseases, and that it is correlated with mucin content and sputum eosinophilia. We now hypothesize that it could be a more-accurate guide than clinical evaluation for the prescription of azithromycin to prevent exacerbations of COPD and to reduce exposure to antibiotics; (2) Methods: "COPD CaRhe" is a multicentric, randomized, controlled trial comparing outcomes in two parallel arms (36 vs. 36 patients). Patients will be recruited in the university hospitals of Montpellier, Bordeaux, and Toulouse, in France, and they should have a diagnosis of COPD with frequent exacerbations (≥3/year). Enrollment will occur during a routine visit to a respiratory department, and follow-up visits will occur every 3 months for a period of 1 year. At each visit, a 3-month prescription of azithromycin will be provided to those patients who obtain a score of <70 on the Cough and Sputum Assessment Questionnaire (CASA-Q) or a critical stress score of σc > 39 on a rheological assessment of sputum, depending upon their randomization group. The primary outcome will be the number of exacerbations of COPD; (3) Discussion: By using sputum rheology, the COPD CaRhe study may provide clinicians with an objective biomarker to guide the prescription of azithromycin while reducing the cumulative exposure to macrolides.

7.
Eur J Immunol ; 53(4): e2250101, 2023 04.
Article in English | MEDLINE | ID: mdl-36793156

ABSTRACT

Epithelial cytokines are involved in the orchestration of T1/T2 inflammatory patterns. We question the persistence of this trait in air-liquid interface (ALI) epithelial cultures and whether this local orientation can be related to systemic patterns (e.g., blood eosinophil counts [BECs]). We investigated alarmin release related to high versus low T2 phenotypes associated with chronic airway diseases. ALIs were reconstituted from 32 control, 40 chronic obstructive pulmonary disease, and 20 asthmatic patients. Interleukin-8 (IL-8; a T1-cytokine), IL-25, IL-33, and thymic stromal lymphopoietin (T2-alarmins) concentrations were assessed in subnatants at steady state and used to explain blood neutrophil and eosinophil counts. IL-25 and IL-8 levels were highest in asthma ALI-subnatants, whereas IL-33 was sparsely detected. Thymic stromal lymphopoietin levels were similar among groups. All asthma cell cultures were T1-high/T2-high, while chronic obstructive pulmonary disease and controls tended to be mixed. BECs were independently explained by both disease and in-culture T2-alarmin levels, irrespective of the T2-alarmin considered. The epithelial ALI-T2 signature was more frequently high in patients with a BEC > 300/mm3 . Despite removal from an in vivo environment for ≥2 months, ALIs release disease-specific cytokine "cocktails" into their subnatants, suggesting continued persistence of alarmin orientation in differentiated cell line environments.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Humans , Alarmins , Interleukin-33 , Eosinophils , Interleukin-8 , Cytokines/metabolism , Asthma/genetics , Thymic Stromal Lymphopoietin
8.
Cells ; 11(15)2022 08 05.
Article in English | MEDLINE | ID: mdl-35954266

ABSTRACT

Background: Chronic Obstructive Pulmonary Disease (COPD), a major cause of mortality and disability, is a complex disease with heterogeneous and ill-understood biological mechanisms. Human induced pluripotent stem cells (hiPSCs) are a promising tool to model human disease, including the impact of genetic susceptibility. Methods: We developed a simple and reliable method for reprogramming peripheral blood mononuclear cells into hiPSCs and to differentiate them into air−liquid interface bronchial epithelium within 45 days. Importantly, this method does not involve any cell sorting step. We reprogrammed blood cells from one healthy control and three patients with very severe COPD. Results: The mean cell purity at the definitive endoderm and ventral anterior foregut endoderm (vAFE) stages was >80%, assessed by quantifying C-X-C Motif Chemokine Receptor 4/SRY-Box Transcription Factor 17 (CXCR4/SOX17) and NK2 Homeobox 1 (NKX2.1) expression, respectively. vAFE cells from all four hiPSC lines differentiated into bronchial epithelium in air−liquid interface conditions, with large zones covered by beating ciliated, basal, goblets, club cells and neuroendocrine cells, as found in vivo. The hiPSC-derived airway epithelium (iALI) from patients with very severe COPD and from the healthy control were undistinguishable. Conclusions: iALI bronchial epithelium is ready for better understanding lung disease pathogenesis and accelerating drug discovery.


Subject(s)
Induced Pluripotent Stem Cells , Pulmonary Disease, Chronic Obstructive , Epithelium/metabolism , Humans , Leukocytes, Mononuclear/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Respiratory Mucosa/pathology
9.
Biochem Biophys Res Commun ; 622: 64-71, 2022 09 24.
Article in English | MEDLINE | ID: mdl-35843096

ABSTRACT

BACKGROUND: Mucus is known to play a pathogenic role in muco-obstructive lung diseases, but little is known about the determinants of mucus rheology. The purpose of this study is to determine which sputum components influence sputum rheology in patients with muco-obstructive lung diseases. METHODS: We performed a cross sectional prospective cohort study. Spontaneous sputum was collected from consecutive patients with muco-obstructive lung diseases. Sputum rheology was assessed using the Rheomuco® rheometer (Rheonova, Grenoble); the elastic modulus G', viscous modulus G″, and the critical stress threshold σc were recorded. Key quantitative and qualitative biological sputum components were determined by cytology, nucleic acid amplification tests and mass spectrometry. RESULTS: 48 patients were included from January to August 2019. Among them, 10 had asthma, 14 COPD and 24 non-CF bronchiectasis (NCFB). The critical stress threshold σc predicted a sputum eosinophilia superior to 1.25% with 89.19% accuracy (AUC = 0.8762). G' and G″ are positively correlated with MUC5AC protein concentration ((rho = 0.361; P = .013) and (rho = 0.335; P = .021), respectively). σc was positively correlated with sputum eosinophilia (rho = 0.394; P = .012), MUC5B (rho = 0.552; P < .001) and total protein (rho = 0.490; P < .001) concentrations. G' and G″ were significantly higher in asthma patients (G' = 14.49[7.18-25.26]Pa, G'' = 3.0[2.16-5.38]Pa) compared to COPD (G' = 5.01[2.94-6.48]Pa, P = .010; G'' = 1.45[1.16-1.94]Pa, P = .006) and to NCFB (G' = 4.99[1.49-10.49]Pa, P = .003; G'' = 1.46[0.71-2.47]Pa, P = .002). CONCLUSION: In muco-obstructive lung diseases, rheology predicts sputum eosinophilia and is correlated with mucin concentrations, regardless of the underlying disease. CLINICAL TRIAL REGISTRATION: (registrar, website, and registration number), where applicable NCT04081740.


Subject(s)
Asthma , Eosinophilia , Pulmonary Disease, Chronic Obstructive , Asthma/metabolism , Cross-Sectional Studies , Eosinophilia/metabolism , Humans , Prospective Studies , Pulmonary Disease, Chronic Obstructive/metabolism , Rheology , Sputum/metabolism
10.
Front Plant Sci ; 13: 869655, 2022.
Article in English | MEDLINE | ID: mdl-35371183

ABSTRACT

Fruit colour is central to the sensorial and nutritional quality of strawberry fruit and is therefore a major target in breeding programmes of the octoploid cultivated strawberry (Fragaria × ananassa). The red colour of the fruit is caused by the accumulation of anthocyanins, which are water-soluble flavonoids. To facilitate molecular breeding, here we have mapped with high resolution fruit colour quantitative trait loci (QTLs) (COLOUR, scored visually as in selection programmes) and associated flavonoid metabolic QTLs (5 anthocyanins compounds together with 8 flavonols and flavan-3-ols) to specific subgenomes of cultivated strawberry. Two main colour-related QTLs were located on the LG3A linkage group (Fragaria vesca subgenome). Genetic mapping, transcriptome analysis and whole genome sequencing enabled the detection of a homoeo-allelic variant of ANTHOCYANIDIN REDUCTASE (ANR) underlying the major male M3A COLOUR and pelargonidin-3-glucoside (PgGs) QTLs (up to ∼20% of explained variance). Consistent with previously published functional studies, ANR transcript abundance was inversely related with PgGs content in contrasted progeny individuals. Genetic segregation analyses further indicated that a molecular marker designed using an 18 bp deletion found in the 5'UTR of the candidate ANR homoeo-allelic variant is effective in identifying genotypes with intense red fruit colour. Our study provides insights into the genetic and molecular control of colour-related traits in strawberry and further defines a genetic marker for marker-assisted selection of new strawberry varieties with improved colour. The QTLs detected and the underlying candidate genes are different from those described to date, emphasising the importance of screening a wide diversity of genetic resources in strawberry.

11.
Cells ; 11(5)2022 02 25.
Article in English | MEDLINE | ID: mdl-35269434

ABSTRACT

Obstructive lung diseases, such as chronic obstructive pulmonary disease, asthma, or non-cystic fibrosis bronchiectasis, share some major pathophysiological features: small airway involvement, dysregulation of adaptive and innate pulmonary immune homeostasis, mucus hyperproduction, and/or hyperconcentration. Mucus regulation is particularly valuable from a therapeutic perspective given it contributes to airflow obstruction, symptom intensity, disease severity, and to some extent, disease prognosis in these diseases. It is therefore crucial to understand the mucus constitution of our patients, its behavior in a stable state and during exacerbation, and its regulatory mechanisms. These are all elements representing potential therapeutic targets, especially in the era of biologics. Here, we first briefly discuss the composition and characteristics of sputum. We focus on mucus and mucins, and then elaborate on the different sample collection procedures and how their quality is ensured. We then give an overview of the different direct analytical techniques available in both clinical routine and more experimental settings, giving their advantages and limitations. We also report on indirect mucus assessment procedures (questionnaires, high-resolution computed tomography scanning of the chest, lung function tests). Finally, we consider ways of integrating these techniques with current and future therapeutic options. Cystic fibrosis will not be discussed given its monogenic nature.


Subject(s)
Cystic Fibrosis , Pulmonary Disease, Chronic Obstructive , Cystic Fibrosis/therapy , Humans , Lung , Mucus , Pulmonary Disease, Chronic Obstructive/diagnosis , Sputum
12.
Biochem Biophys Res Commun ; 604: 151-157, 2022 05 14.
Article in English | MEDLINE | ID: mdl-35305419

ABSTRACT

As opposed to surface marker staining, certain cell types can only be recognized by intracellular markers. Intracellular staining for use in cell sorting remains challenging. Fixation and permeabilization steps for intracellular staining and the presence of RNases notably affect preservation of high-quality mRNA. We report the work required for the optimization of a successful protocol for microarray analysis of intracellular target-sorted, formalin-fixed human bronchial club cells. Cells obtained from differentiated air-liquid interface cultures were stained with the most characteristic intracellular markers for club cell (SCGB1A1+) sorting. A benchmarked intracellular staining protocol was carried out before flow cytometry. The primary outcome was the extraction of RNA sufficient quality for microarray analysis as assessed by Bioanalyzer System. Fixation with 4% paraformaldehyde coupled with 0.1% Triton/0.1% saponin permeabilization obtained optimal results for SCGB1A1 staining. Addition of RNase inhibitors throughout the protocol and within the appropriate RNA extraction kit (Formalin-Fixed-Paraffin-Embedded) dramatically improved RNA quality, resulting in samples eligible for microarray analysis. The protocol resulted in successful cell sorting according to specific club cell intracellular marker without using cell surface marker. The protocol also preserved RNA of sufficient quality for subsequent microarray transcriptomic analysis, and we were able to generate transcriptomic signature of club cells.


Subject(s)
Bronchioles , Flow Cytometry , Gene Expression Profiling , RNA, Messenger , Uteroglobin , Bronchioles/cytology , Flow Cytometry/methods , Formaldehyde , Gene Expression Profiling/methods , Humans , Paraffin Embedding , RNA, Messenger/isolation & purification , Tissue Fixation/methods , Transcriptome , Uteroglobin/chemistry
13.
Med Sci (Paris) ; 36(4): 382-388, 2020 Apr.
Article in French | MEDLINE | ID: mdl-32356715

ABSTRACT

As burden of chronic respiratory diseases is constantly increasing, improving in vitro lung models is essential in order to reproduce as closely as possible the complex pulmonary architecture, responsible for oxygen uptake and carbon dioxide clearance. The study of diseases that affect the respiratory system has benefited from in vitro reconstructions of the respiratory epithelium with inserts in air/liquid interface (2D) or in organoids able to mimic up to the arborescence of the respiratory tree (3D). Recent development in the fields of pluripotent stem cells-derived organoids and genome editing technologies has provided new insights to better understand pulmonary diseases and to find new therapeutic perspectives.


TITLE: Les organoïdes pulmonaires. ABSTRACT: L'impact en santé publique des pathologies respiratoires chroniques ne cesse de croître. Dans ce contexte, il paraît indispensable d'améliorer les modèles d'études du poumon afin de reproduire au plus proche l'architecture pulmonaire complexe, garante des fonctions d'oxygénation et d'épuration du gaz carbonique. Les connaissances actuelles en physiopathologie respiratoire résultent en partie des études de modèles de reconstitution d'épithélium bronchique in vitro à partir de cellules primaires, en deux dimensions sur des inserts, ou en trois dimensions, en organoïdes mimant jusqu'à l'arborescence pulmonaire. Le développement de ces modèles in vitro a connu un nouvel essor grâce aux organoïdes pulmonaires issus de cellules souches pluripotentes et la démocratisation des outils d'édition du génome. Ces apports technologiques récents offrent de nouvelles perspectives en matière de thérapeutiques ou de compréhension physiopathologique et pourraient, dans le futur, ouvrir les portes de la médecine régénératrice pulmonaire.


Subject(s)
Cell Culture Techniques , Lung/cytology , Organoids/cytology , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/physiology , Animals , Bioengineering/methods , Bioengineering/trends , Carbon Dioxide/pharmacology , Carbon Dioxide/physiology , Cell Culture Techniques/methods , Cell Culture Techniques/trends , Cells, Cultured , Gene Editing/methods , Gene Editing/trends , Humans , Lung/pathology , Lung/physiology , Models, Biological , Organoids/pathology , Organoids/physiology , Oxygen/pharmacology , Oxygen/physiology , Pulmonary Gas Exchange/physiology , Respiratory Mucosa/cytology , Respiratory Mucosa/drug effects , Tissue Scaffolds/chemistry
14.
J Agric Food Chem ; 68(25): 6927-6939, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32469530

ABSTRACT

Flavonoids are products from specialized metabolism that contribute to fruit sensorial (color) and nutritional (antioxidant properties) quality. Here, using a pseudo full-sibling F1 progeny previously studied for fruit sensorial quality of cultivated strawberry (Fragaria × ananassa), we explored over two successive years the genetic architecture of flavonoid-related traits using liquid chromatography electrospray ionization tandem mass spectrometry (13 compounds including anthocyanins, flavonols, and flavan-3-ols) and colorimetric assays (anthocyanins, flavonoids, phenolics, and total antioxidant capacity (ferric reducing antioxidant power and Trolox equivalent antioxidant capacity)). Network correlation analysis highlighted the high connectivity of flavonoid compounds within each chemical class and low correlation with colorimetric traits except for anthocyanins. Mapping onto the female and male linkage maps of 152 flavonoid metabolic quantitative trait loci (mQTLs) and of 26 colorimetric QTLs indicated colocalization on few linkage groups of major flavonoid- and taste-related QTLs previously uncovered. These results pave the way for the discovery of genetic variations underlying flavonoid mQTLs and for marker-assisted selection of strawberry varieties with improved sensorial and nutritional quality.


Subject(s)
Flavonoids/biosynthesis , Fragaria/genetics , Fruit/chemistry , Quantitative Trait Loci , Anthocyanins/metabolism , Fragaria/chemistry , Fragaria/metabolism , Fruit/genetics , Fruit/metabolism , Quality Control
16.
Am J Respir Cell Mol Biol ; 61(4): 501-511, 2019 10.
Article in English | MEDLINE | ID: mdl-30943377

ABSTRACT

The airway epithelium represents a fragile environmental interface potentially disturbed by cigarette smoke (CS), the major risk factor for developing chronic obstructive pulmonary disease (COPD). CS leads to bronchial epithelial damage on ciliated, goblet, and club cells, which could involve calcium (Ca2+) signaling. Ca2+ is a key messenger involved in virtually all fundamental physiological functions, including mucus and cytokine secretion, cilia beating, and epithelial repair. In this study, we analyzed Ca2+ signaling in air-liquid interface-reconstituted bronchial epithelium from control subjects and smokers (with and without COPD). We further aimed to determine how smoking impaired Ca2+ signaling. First, we showed that the endoplasmic reticulum (ER) depletion of Ca2+ stores was decreased in patients with COPD and that the Ca2+ influx was decreased in epithelial cells from smokers (regardless of COPD status). In addition, acute CS exposure led to a decrease in ER Ca2+ release, significant in smoker subjects, and to a decrease in Ca2+ influx only in control subjects. Furthermore, the differential expression of 55 genes involved in Ca2+ signaling highlighted that only ORAI3 expression was significantly altered in smokers (regardless of COPD status). Finally, we incubated epithelial cells with an ORAI antagonist (GSK-7975A). GSK-7975A altered Ca2+ influx and ciliary beating, but not mucus and cytokine secretion or epithelial repair, in control subjects. Our data suggest that Ca2+ signaling is impaired in smoker epithelia (regardless of COPD status) and involves ORAI3. Moreover, ORAI3 is additionally involved in ciliary beating.


Subject(s)
Bronchi/cytology , Calcium Channels/physiology , Calcium/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Respiratory Mucosa/metabolism , Smoking/metabolism , Adult , Aged , Benzamides/pharmacology , Bronchi/metabolism , Calcium Channels/biosynthesis , Calcium Channels/genetics , Calcium Signaling , Cells, Cultured , Cilia/drug effects , Cilia/physiology , Cytokines/metabolism , Endoplasmic Reticulum/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Gene Expression Regulation , Humans , Interleukin-8/biosynthesis , Male , Middle Aged , Mucin 5AC/biosynthesis , Mucus/metabolism , Pyrazoles/pharmacology , Respiratory Mucosa/pathology , Signal Transduction/physiology , Smoke , Smokers
17.
Eur Respir J ; 54(1)2019 07.
Article in English | MEDLINE | ID: mdl-31023848

ABSTRACT

Club cell secretory protein (CCSP) knockout mice exhibit increased airway neutrophilia, as found in chronic obstructive pulmonary disease (COPD). We therefore investigated whether treating COPD airway epithelia with recombinant human CCSP (rhCCSP) could dampen exaggerated airway neutrophilia.Control, smoker and COPD air-liquid interface (ALI) cultures exposed to cigarette smoke extract (CSE) were treated with and without rhCCSP. The chemotactic properties of the supernatants were assessed using Dunn chambers. Neutrophil chemotaxis along recombinant human interleukin 8 (rhIL8) gradients (with and without rhCCSP) was also determined. rhCCSP-rhIL8 interactions were tested through co-immunoprecipitation, Biacore surface plasmon resonance (SPR) and in silico modelling. The relationship between CCSP/IL8 concentration ratios in the supernatant of induced sputum from COPD patients versus neutrophilic airway infiltration assessed in lung biopsies was assessed.Increased neutrophilic chemotactic activity of CSE-treated ALI cultures followed IL8 concentrations and returned to normal when supplemented with rhCCSP. rhIL8-induced chemotaxis of neutrophils was reduced by rhCCSP. rhCCSP and rhIL8 co-immunoprecipitated. SPR confirmed this in vitro interaction (equilibrium dissociation constant=8 µM). In silico modelling indicated that this interaction was highly likely. CCSP/IL8 ratios in induced sputum correlated well with the level of small airway neutrophilic infiltration (r2=0.746, p<0.001).CCSP is a biologically relevant counter-balancer of neutrophil chemotactic activity. These different approaches used in this study suggest that, among the possible mechanisms involved, CCSP may directly neutralise IL8.


Subject(s)
Bronchioles/pathology , Chemotaxis, Leukocyte , Neutrophils/cytology , Pulmonary Disease, Chronic Obstructive/pathology , Uteroglobin/pharmacology , Humans , Interleukin-8/metabolism , Interleukin-8/pharmacology , Neutrophils/drug effects , Pulmonary Disease, Chronic Obstructive/metabolism , Recombinant Proteins/pharmacology , Smoking , Sputum/cytology
18.
Pharmacol Ther ; 183: 58-77, 2018 03.
Article in English | MEDLINE | ID: mdl-28987320

ABSTRACT

Lungs have a complex structure composed of different cell types that form approximately 17 million airway branches of gas-delivering bronchioles connected to 500 million gas-exchanging alveoli. Airways and alveoli are lined by epithelial cells that display a low rate of turnover at steady-state, but can regenerate the epithelium in response to injuries. Here, we review the key points of lung development, homeostasis and epithelial cell plasticity in response to injury and disease, because this knowledge is required to develop new lung disease treatments. Of note, canonical signaling pathways that are essential for proper lung development during embryogenesis are also involved in the pathophysiology of most chronic airway diseases. Moreover, the perfect control of these interconnected pathways is needed for the successful differentiation of induced pluripotent stem cells (iPSC) into lung cells. Indeed, differentiation of iPSC into airway epithelium and alveoli is based on the use of biomimetics of normal embryonic and fetal lung development. In vitro iPSC-based models of lung diseases can help us to better understand the impaired lung repair capacity and to identify new therapeutic targets and new approaches, such as lung cell therapy.


Subject(s)
Lung/physiology , Animals , Cell Plasticity , Cell- and Tissue-Based Therapy , Drug Design , Epithelial Cells/physiology , Humans , Induced Pluripotent Stem Cells/transplantation , Lung Diseases/therapy , Regeneration
19.
BMC Pulm Med ; 17(1): 80, 2017 May 03.
Article in English | MEDLINE | ID: mdl-28468615

ABSTRACT

BACKGROUND: Bronchial epithelium plays a key role in orchestrating innate and adaptive immunity. The fate of ex vivo airway epithelial cultures growing at the air liquid interface (ALI) derived from human endobronchial biopsies or brushings is not easy to predict. Calibrating and differentiating these cells is a long and expensive process requiring rigorous expertise. Pinpointing factors associated with ALI culture success would help researchers gain further insight into epithelial progenitor behavior. METHODS: A successful ALI culture was defined as one in which a pseudostratified epithelium has formed after 28 days in the presence of all differentiated epithelial cell types. A 4-year prospective bi-center study was conducted with adult subjects enrolled in different approved research protocols. RESULTS: 463 consecutive endobronchial biopsies were obtained from normal healthy volunteers, healthy smokers, asthmatic patients and smokers with COPD. All demographic variables, the different fiber optic centers and culture operators, numbers of endo-bronchial biopsies and the presence of ciliated cells were carefully recorded. Univariate and multivariate models were developed. A stepwise procedure was used to select the final logistic regression model. ALI culture success was independently associated with the presence of living ciliated cells within the initial biopsy (OR = 2.18 [1.50-3.16], p < 0.001). CONCLUSION: This finding highlights the properties of the cells derived from the epithelium dedifferentiation process. The preferential selection of samples with ciliated beating cells would probably save time and money. It is still unknown whether successful ALI culture is related to indicators of general cell viability or a purported stem cell state specifically associated with ciliated beating cells.


Subject(s)
Asthma/pathology , Epithelial Cells/physiology , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Mucosa/pathology , Smoking/pathology , Adult , Aged , Bronchoscopy , Case-Control Studies , Cell Culture Techniques/methods , Culture Media , Epithelial Cells/cytology , Female , France , Humans , Logistic Models , Male , Middle Aged , Multivariate Analysis , Proportional Hazards Models , Prospective Studies , Severity of Illness Index
20.
Int J Biochem Cell Biol ; 88: 124-132, 2017 07.
Article in English | MEDLINE | ID: mdl-28478266

ABSTRACT

The development of suitable Cystic Fibrosis (CF) models for preclinical bench tests of therapeutic candidates is challenging. Indeed, the validation of molecules to rescue the p.Phe508del-CFTR channel (encoded by the Cystic Fibrosis Transmembrane conductance Regulator gene carrying the p.Phe508del mutation) requires taking into account their overall effects on the epithelium. Suberoylanilide Hydroxamic Acid (SAHA), a histone deacetylase inhibitor (HDACi), was previously shown to be a CFTR corrector via proteostasis modulation in CFTR-deficient immortalized cells. Here, we tested SAHA effects on goblet cell metaplasia using an ex vivo model based on the air-liquid interface (ALI) culture of differentiated airway epithelial cells obtained by nasal scraping from CF patients and healthy controls. Ex vivo epithelium grew successfully in ALI cultures with significant rise in the expression of CFTR and of markers of airway epithelial differentiation compared to monolayer cell culture. SAHA decreased CFTR transcript and protein levels in CF and non-CF epithelia. Whereas SAHA induced lysine hyperacetylation, it did not change histone modifications at the CFTR promoter. SAHA reduced MUC5AC and MUC5B expression and inhibited goblet epithelial cell differentiation. Similar effects were obtained in CF and non-CF epithelia. All the effects were fully reversible within five days from SAHA withdrawal. We conclude that, ex vivo, SAHA modulate the structure of airway epithelia without specific effect on CFTR gene and protein suggesting that HDACi cannot be useful for CF treatment.


Subject(s)
Cell Membrane/drug effects , Cell Membrane/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/metabolism , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Epithelium/drug effects , Epithelium/metabolism , Female , Gene Expression Regulation/drug effects , Histone Deacetylase Inhibitors/therapeutic use , Humans , Male , Mucin 5AC/genetics , Mucin-5B/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vorinostat , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...