Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(19): 10565-10574, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32345721

ABSTRACT

Numerous mutations that impair retrograde membrane trafficking between endosomes and the Golgi apparatus lead to neurodegenerative diseases. For example, mutations in the endosomal retromer complex are implicated in Alzheimer's and Parkinson's diseases, and mutations of the Golgi-associated retrograde protein (GARP) complex cause progressive cerebello-cerebral atrophy type 2 (PCCA2). However, how these mutations cause neurodegeneration is unknown. GARP mutations in yeast, including one causing PCCA2, result in sphingolipid abnormalities and impaired cell growth that are corrected by treatment with myriocin, a sphingolipid synthesis inhibitor, suggesting that alterations in sphingolipid metabolism contribute to cell dysfunction and death. Here we tested this hypothesis in wobbler mice, a murine model with a homozygous partial loss-of-function mutation in Vps54 (GARP protein) that causes motor neuron disease. Cytotoxic sphingoid long-chain bases accumulated in embryonic fibroblasts and spinal cords from wobbler mice. Remarkably, chronic treatment of wobbler mice with myriocin markedly improved their wellness scores, grip strength, neuropathology, and survival. Proteomic analyses of wobbler fibroblasts revealed extensive missorting of lysosomal proteins, including sphingolipid catabolism enzymes, to the Golgi compartment, which may contribute to the sphingolipid abnormalities. Our findings establish that altered sphingolipid metabolism due to GARP mutations contributes to neurodegeneration and suggest that inhibiting sphingolipid synthesis might provide a useful strategy for treating these disorders.


Subject(s)
Membrane Proteins/genetics , Membrane Proteins/metabolism , Sphingolipids/metabolism , Animals , Disease Models, Animal , Endosomes/metabolism , Fatty Acids, Monounsaturated/pharmacology , Female , Fibroblasts/metabolism , Golgi Apparatus/metabolism , Male , Mice , Mice, Neurologic Mutants , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Motor Neuron Disease/pathology , Motor Neurons/metabolism , Mouse Embryonic Stem Cells , Mutation , Nervous System Malformations/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Protein Transport , Proteomics , Vesicular Transport Proteins/metabolism
2.
Elife ; 42015 Sep 10.
Article in English | MEDLINE | ID: mdl-26357016

ABSTRACT

Sphingolipids are abundant membrane components and important signaling molecules in eukaryotic cells. Their levels and localization are tightly regulated. However, the mechanisms underlying this regulation remain largely unknown. In this study, we identify the Golgi-associated retrograde protein (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution, and lysosomal dysfunction. A GARP complex mutation analogous to a VPS53 allele causing progressive cerebello-cerebral atrophy type 2 (PCCA2) in humans exhibits similar, albeit weaker, phenotypes in yeast, providing mechanistic insights into disease pathogenesis. Inhibition of the first step of de novo sphingolipid synthesis is sufficient to mitigate many of the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2.


Subject(s)
Homeostasis , Membrane Proteins/metabolism , Sphingolipids/metabolism , HeLa Cells , Humans , Membrane Proteins/deficiency , Membrane Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
3.
J Cell Biol ; 202(7): 1107-22, 2013 Sep 30.
Article in English | MEDLINE | ID: mdl-24081491

ABSTRACT

Birt-Hogg-Dubé syndrome, a human disease characterized by fibrofolliculomas (hair follicle tumors) as well as a strong predisposition toward the development of pneumothorax, pulmonary cysts, and renal carcinoma, arises from loss-of-function mutations in the folliculin (FLCN) gene. In this study, we show that FLCN regulates lysosome function by promoting the mTORC1-dependent phosphorylation and cytoplasmic sequestration of transcription factor EB (TFEB). Our results indicate that FLCN is specifically required for the amino acid-stimulated recruitment of mTORC1 to lysosomes by Rag GTPases. We further demonstrated that FLCN itself was selectively recruited to the surface of lysosomes after amino acid depletion and directly bound to RagA via its GTPase domain. FLCN-interacting protein 1 (FNIP1) promotes both the lysosome recruitment and Rag interactions of FLCN. These new findings define the lysosome as a site of action for FLCN and indicate a critical role for FLCN in the amino acid-dependent activation of mTOR via its direct interaction with the RagA/B GTPases.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Carrier Proteins/metabolism , Lysosomes/metabolism , Monomeric GTP-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Proto-Oncogene Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Amino Acids/metabolism , Blotting, Western , Cytoplasm/metabolism , Fluorescent Antibody Technique , Humans , Immunoprecipitation , Mechanistic Target of Rapamycin Complex 1 , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , RNA, Small Interfering/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tumor Suppressor Proteins/antagonists & inhibitors , Tumor Suppressor Proteins/genetics
4.
Tissue Barriers ; 1(2): e24377, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-24665391

ABSTRACT

The cellular prion protein was historically characterized owing to its misfolding in prion disease. Although its physiological role remains incompletely understood, PrP(C) has emerged as an evolutionary conserved, multifaceted protein involved in a wide-range of biological processes. PrP(C) is a GPI-anchored protein targeted to the plasma membrane, in raft microdomains, where its interaction with a repertoire of binding partners, which differ depending on cell models, mediates its functions. Among identified PrP(C) partners are cell adhesion molecules. This review will focus on the multiple implications of PrP(C) in cell adhesion processes, mainly the regulation of cell-cell junctions in epithelial and endothelial cells and the consequences on barrier properties. We will show how recent findings argue for a role of PrP(C) in the recruitment of signaling molecules, which in turn control the targeting or the stability of adhesion complexes at the plasma membrane.

5.
Sci Signal ; 5(228): ra42, 2012 Jun 12.
Article in English | MEDLINE | ID: mdl-22692423

ABSTRACT

Lysosomes are the major cellular site for clearance of defective organelles and digestion of internalized material. Demand on lysosomal capacity can vary greatly, and lysosomal function must be adjusted to maintain cellular homeostasis. Here, we identified an interaction between the lysosome-localized mechanistic target of rapamycin complex 1 (mTORC1) and the transcription factor TFEB (transcription factor EB), which promotes lysosome biogenesis. When lysosomal activity was adequate, mTOR-dependent phosphorylation of TFEB on Ser(211) triggered the binding of 14-3-3 proteins to TFEB, resulting in retention of the transcription factor in the cytoplasm. Inhibition of lysosomal function reduced the mTOR-dependent phosphorylation of TFEB, resulting in diminished interactions between TFEB and 14-3-3 proteins and the translocation of TFEB into the nucleus, where it could stimulate genes involved in lysosomal biogenesis. These results identify TFEB as a target of mTOR and suggest a mechanism for matching the transcriptional regulation of genes encoding proteins of autophagosomes and lysosomes to cellular need. The closely related transcription factors MITF (microphthalmia transcription factor) and TFE3 (transcription factor E3) also localized to lysosomes and accumulated in the nucleus when lysosome function was inhibited, thus broadening the range of physiological contexts under which this regulatory mechanism may prove important.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation/physiology , Homeostasis/physiology , Lysosomes/physiology , Proteins/metabolism , Signal Transduction/physiology , 14-3-3 Proteins/metabolism , Analysis of Variance , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Electrophoretic Mobility Shift Assay , HeLa Cells , Humans , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1 , Microphthalmia-Associated Transcription Factor/metabolism , Microscopy, Confocal , Multiprotein Complexes , Mutation/genetics , Phosphorylation , TOR Serine-Threonine Kinases
6.
Gastroenterology ; 143(1): 122-32.e15, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22446194

ABSTRACT

BACKGROUND & AIMS: Cell adhesion is one function regulated by cellular prion protein (PrP(c)), a ubiquitous, glycosylphosphatidylinositol-anchored glycoprotein. PrP(c) is located in cell-cell junctions and interacts with desmosome proteins in the intestinal epithelium. We investigated its role in intestinal barrier function. METHODS: We analyzed permeability and structure of cell-cell junctions in intestine tissues from PrP(c) knockout (PrP(c-/-)) and wild-type mice. PrP(c) expression was knocked down in cultured human Caco-2/TC7 enterocytes using small hairpin RNAs. We analyzed colon samples from 24 patients with inflammatory bowel disease (IBD). RESULTS: Intestine tissues from PrP(c-/-) mice had greater paracellular permeability than from wild-type mice (105.9 ± 13.4 vs 59.6 ± 10.1 mg/mL fluorescein isothiocyanate-dextran flux; P < .05) and impaired intercellular junctions. PrP(c-/-) mice did not develop spontaneous disease but were more sensitive than wild-type mice to induction of colitis with dextran sulfate (32% mortality vs 4%, respectively; P = .0033). Such barrier defects were observed also in Caco-2/TC7 enterocytes following PrP(c) knockdown; the cells had increased paracellular permeability (1.5-fold over 48 hours; P < .001) and reduced transepithelial electrical resistance (281.1 ± 4.9 vs 370.6 ± 5.7 Ω.cm(2); P < .001). Monolayer shape and cell-cell junctions were altered in cultures of PrP(c) knockdown cells; levels of E-cadherin, desmoplakin, plakoglobin, claudin-4, occludin, zonula occludens 1, and tricellulin were decreased at cell contacts. Cell shape and junctions were restored on PrP(c) re-expression. Levels of PrP(c) were decreased at cell-cell junctions in colonic epithelia from patients with Crohn's disease or ulcerative colitis. CONCLUSIONS: PrP(c) regulates intestinal epithelial cell-cell junctions and barrier function. Its localization is altered in colonic epithelia from patients with IBD, supporting the concept that disrupted barrier function contributes to this disorder.


Subject(s)
Inflammatory Bowel Diseases/metabolism , Intercellular Junctions/metabolism , Intestinal Mucosa/metabolism , PrPC Proteins/metabolism , Animals , Cell Membrane Permeability/physiology , Cells, Cultured , Colon/metabolism , Enterocytes/metabolism , Humans , Mice , Mice, Knockout
7.
Am J Physiol Gastrointest Liver Physiol ; 296(2): G235-44, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19056766

ABSTRACT

Enterocytes of the intestinal epithelium are continually regenerated. They arise from precursor cells in crypts, migrate along villi, and finally die, 3-4 days later, when they reach the villus apex. Their death is thought to occur by anoikis, a form of apoptosis induced by cell detachment, but the mechanism of this process remains poorly understood. We have previously shown that a key event in the onset of anoikis in normal enterocytes detached from the basal lamina is the disruption of adherens junctions mediated by E-cadherin (Fouquet S, Lugo-Martinez VH, Faussat AM, Renaud F, Cardot P, Chambaz J, Pincon-Raymond M, Thenet S. J Biol Chem 279: 43061-43069, 2004). Here we have further investigated the mechanisms underlying this disassembly of the adherens junctions. We show that disruption of the junctions occurs through endocytosis of E-cadherin and that this process depends on the tyrosine-kinase activity of the epidermal growth factor receptor (EGFR). Activation of EGFR was detected in detached enterocytes before E-cadherin disappearance. Specific inhibition of EGFR by tyrphostin AG-1478 maintained E-cadherin and its cytoplasmic partners beta- and alpha-catenin at cell-cell contacts and decreased anoikis. Finally, EGFR activation was evidenced in the intestinal epithelium in vivo, in rare individual cells, which were shown to lose their interactions with the basal lamina. We conclude that EGFR is activated as enterocytes become detached from the basal lamina, and that this mechanism contributes to the disruption of E-cadherin-dependent junctions leading to anoikis. This suggests that EGFR participates in the physiological elimination of the enterocytes.


Subject(s)
Anoikis , Cadherins/metabolism , Cell Adhesion , Enterocytes/metabolism , ErbB Receptors/metabolism , Intestine, Small/metabolism , Tight Junctions/metabolism , Animals , Anoikis/drug effects , Cell Adhesion/drug effects , Endocytosis , Enterocytes/drug effects , Enterocytes/pathology , ErbB Receptors/antagonists & inhibitors , Intestine, Small/drug effects , Intestine, Small/pathology , Mice , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Quinazolines , Tight Junctions/drug effects , Tight Junctions/pathology , Tyrphostins/pharmacology , alpha Catenin/metabolism , beta Catenin/metabolism
8.
PLoS One ; 3(8): e3000, 2008 Aug 20.
Article in English | MEDLINE | ID: mdl-18714380

ABSTRACT

BACKGROUND: The physiological function of the ubiquitous cellular prion protein, PrP(c), is still under debate. It was essentially studied in nervous system, but poorly investigated in epithelial cells. We previously reported that PrP(c) is targeted to cell-cell junctions of polarized epithelial cells, where it interacts with c-Src. METHODOLOGY/FINDINGS: We show here that, in cultured human enterocytes and in intestine in vivo, the mature PrP(c) is differentially targeted either to the nucleus in dividing cells or to cell-cell contacts in polarized/differentiated cells. By proteomic analysis, we demonstrate that the junctional PrP(c) interacts with cytoskeleton-associated proteins, such as gamma- and beta-actin, alpha-spectrin, annexin A2, and with the desmosome-associated proteins desmoglein, plakoglobin and desmoplakin. In addition, co-immunoprecipitation experiments revealed complexes associating PrP(c), desmoglein and c-Src in raft domains. Through siRNA strategy, we show that PrP(c) is necessary to complete the process of epithelial cell proliferation and for the sub-cellular distribution of proteins involved in cell architecture and junctions. Moreover, analysis of the architecture of the intestinal epithelium of PrP(c) knock-out mice revealed a net decrease in the size of desmosomal junctions and, without change in the amount of BrdU incorporation, a shortening of the length of intestinal villi. CONCLUSIONS/SIGNIFICANCE: From these results, PrP(c) could be considered as a new partner involved in the balance between proliferation and polarization/differentiation in epithelial cells.


Subject(s)
Cell Division/physiology , Epithelial Cells/cytology , Intercellular Junctions/physiology , PrPC Proteins/physiology , Caco-2 Cells , Cell Polarity , Epithelial Cells/physiology , Humans , Lipids/pharmacology , Plasmids , PrPC Proteins/genetics , RNA, Small Interfering/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...