Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Cell Biol ; 103(2): 151403, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503131

ABSTRACT

Cell shape and motility are determined by the cytoskeleton, an interpenetrating network of actin filaments, microtubules, and intermediate filaments. The biophysical properties of each filament type individually have been studied extensively by cell-free reconstitution. By contrast, the interactions between the three cytoskeletal networks are relatively unexplored. They are coupled via crosslinkers of the plakin family such as plectin. These are challenging proteins for reconstitution because of their giant size and multidomain structure. Here we engineer a recombinant actin-vimentin crosslinker protein called 'ACTIF' that provides a minimal model system for plectin, recapitulating its modular design with actin-binding and intermediate filament-binding domains separated by a coiled-coil linker for dimerisation. We show by fluorescence and electron microscopy that ACTIF has a high binding affinity for vimentin and actin and creates mixed actin-vimentin bundles. Rheology measurements show that ACTIF-mediated crosslinking strongly stiffens actin-vimentin composites. Finally, we demonstrate the modularity of this approach by creating an ACTIF variant with the intermediate filament binding domain of Adenomatous Polyposis Coli. Our protein engineering approach provides a new cell-free system for the biophysical characterization of intermediate filament-binding crosslinkers and for understanding the mechanical synergy between actin and vimentin in mesenchymal cells.


Subject(s)
Actins , Vimentin , Vimentin/metabolism , Actins/metabolism , Humans , Intermediate Filaments/metabolism , Actin Cytoskeleton/metabolism , Animals , Protein Binding
2.
J Vis Exp ; (184)2022 06 15.
Article in English | MEDLINE | ID: mdl-35781524

ABSTRACT

Cells can crawl, self-heal, and tune their stiffness due to their remarkably dynamic cytoskeleton. As such, reconstituting networks of cytoskeletal biopolymers may lead to a host of active and adaptable materials. However, engineering such materials with precisely tuned properties requires measuring how the dynamics depend on the network composition and synthesis methods. Quantifying such dynamics is challenged by variations across the time, space, and formulation space of composite networks. The protocol here describes how the Fourier analysis technique, differential dynamic microscopy (DDM), can quantify the dynamics of biopolymer networks and is particularly well suited for studies of cytoskeleton networks. DDM works on time sequences of images acquired using a range of microscopy modalities, including laser-scanning confocal, widefield fluorescence, and brightfield imaging. From such image sequences, one can extract characteristic decorrelation times of density fluctuations across a span of wave vectors. A user-friendly, open-source Python package to perform DDM analysis is also developed. With this package, one can measure the dynamics of labeled cytoskeleton components or of embedded tracer particles, as demonstrated here with data of intermediate filament (vimentin) networks and active actin-microtubule networks. Users with no prior programming or image processing experience will be able to perform DDM using this software package and associated documentation.


Subject(s)
Cytoskeleton , Microscopy , Actins , Intermediate Filaments , Microtubules
3.
Cells ; 10(11)2021 10 23.
Article in English | MEDLINE | ID: mdl-34831083

ABSTRACT

The cellular cytoskeleton provides the cell with a mechanical rigidity that allows mechanical interaction between cells and the extracellular environment. The actin structure plays a key role in mechanical events such as motility or the establishment of cell polarity. From the earliest stages of development, as represented by the ex vivo expansion of naïve embryonic stem cells (ESCs), the critical mechanical role of the actin structure is becoming recognized as a vital cue for correct segregation and lineage control of cells and as a regulatory structure that controls several transcription factors. Naïve ESCs have a characteristic morphology, and the ultrastructure that underlies this condition remains to be further investigated. Here, we investigate the 3D actin cytoskeleton of naïve mouse ESCs using super-resolution optical reconstruction microscopy (STORM). We investigate the morphological, cytoskeletal, and mechanical changes in cells cultured in 2i or Serum/LIF media reflecting, respectively, a homogeneous preimplantation cell state and a state that is closer to embarking on differentiation. STORM imaging showed that the peripheral actin structure undergoes a dramatic change between the two culturing conditions. We also detected micro-rheological differences in the cell periphery between the cells cultured in these two media correlating well with the observed nano-architecture of the ESCs in the two different culture conditions. These results pave the way for linking physical properties and cytoskeletal architecture to cell morphology during early development.


Subject(s)
Actins/metabolism , Cell Shape , Mouse Embryonic Stem Cells/cytology , Actin Cytoskeleton/metabolism , Animals , Cell Proliferation , Cells, Cultured , Elasticity , Imaging, Three-Dimensional , Mice , Nanoparticles/chemistry , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...