Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13810, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877292

ABSTRACT

Fibrosis is an important complication in inflammatory bowel diseases. Previous studies suggest an important role of matrix Gla protein (MGP) and thrombospondin 2 (THBS2) in fibrosis in various organs. Our aim was to analyse their expression together with regulatory miRNAs in submucosal and subserosal fibroblasts in ulcerative colitis (UC) and Crohn's disease (CD) using immunohistochemistry and qPCR. Digital pathology was used to compare collagen fibre characteristics of submucosal and subserosal fibrosis. Immunohistochemistry showed expression of MGP, but not THBS2 in submucosa in UC and CD. In the subserosa, there was strong staining for both proteins in CD but not in UC. qPCR showed significant upregulation of THBS2 and MGP genes in CD subserosa compared to the submucosa. Digital pathology analysis revealed higher proportion of larger and thicker fibres that were more tortuous and reticulated in subserosal fibrosis compared to submucosal fibrosis. These results suggest distinct fibroblast populations in fibrostenosing CD, and are further supported by image analysis showing significant differences in the morphology and architecture of collagen fibres in submucosal fibrosis in comparison to subserosal fibrosis. Our study is the first to describe differences in submucosal and subserosal fibroblast populations, contributing to understanding of the pathogenesis of fibrostenosis in CD.


Subject(s)
Calcium-Binding Proteins , Crohn Disease , Extracellular Matrix Proteins , Fibroblasts , Fibrosis , Matrix Gla Protein , Thrombospondins , Crohn Disease/pathology , Crohn Disease/metabolism , Humans , Fibroblasts/metabolism , Fibroblasts/pathology , Extracellular Matrix Proteins/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Thrombospondins/metabolism , Thrombospondins/genetics , Male , Female , Adult , Middle Aged , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Aged , Immunohistochemistry
2.
Sci Rep ; 14(1): 5885, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467661

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is a severe liver disease characterized by lipid accumulation, inflammation and fibrosis. The development of MASH therapies has been hindered by the lack of human translational models and limitations of analysis techniques for fibrosis. The MASH three-dimensional (3D) InSight™ human liver microtissue (hLiMT) model recapitulates pathophysiological features of the disease. We established an algorithm for automated phenotypic quantification of fibrosis of Sirius Red stained histology sections of MASH hLiMTs model using a digital pathology quantitative single-fiber artificial intelligence (AI) FibroNest™ image analysis platform. The FibroNest™ algorithm for MASH hLiMTs was validated using anti-fibrotic reference compounds with different therapeutic modalities-ALK5i and anti-TGF-ß antibody. The phenotypic quantification of fibrosis demonstrated that both reference compounds decreased the deposition of fibrillated collagens in alignment with effects on the secretion of pro-collagen type I/III, tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-3 and pro-fibrotic gene expression. In contrast, clinical compounds, Firsocostat and Selonsertib, alone and in combination showed strong anti-fibrotic effects on the deposition of collagen fibers, however less pronounced on the secretion of pro-fibrotic biomarkers. In summary, the phenotypic quantification of fibrosis of MASH hLiMTs combined with secretion of pro-fibrotic biomarkers and transcriptomics represents a promising drug discovery tool for assessing anti-fibrotic compounds.


Subject(s)
Artificial Intelligence , Fatty Liver , Humans , Tissue Inhibitor of Metalloproteinase-1/metabolism , Fibroblasts/metabolism , Fibrosis , Collagen Type III/metabolism , Fatty Liver/metabolism , Biomarkers/metabolism
3.
J Hepatol ; 80(2): 335-351, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37879461

ABSTRACT

The worldwide prevalence of non-alcoholic steatohepatitis (NASH) is increasing, causing a significant medical burden, but no approved therapeutics are currently available. NASH drug development requires histological analysis of liver biopsies by expert pathologists for trial enrolment and efficacy assessment, which can be hindered by multiple issues including sample heterogeneity, inter-reader and intra-reader variability, and ordinal scoring systems. Consequently, there is a high unmet need for accurate, reproducible, quantitative, and automated methods to assist pathologists with histological analysis to improve the precision around treatment and efficacy assessment. Digital pathology (DP) workflows in combination with artificial intelligence (AI) have been established in other areas of medicine and are being actively investigated in NASH to assist pathologists in the evaluation and scoring of NASH histology. DP/AI models can be used to automatically detect, localise, quantify, and score histological parameters and have the potential to reduce the impact of scoring variability in NASH clinical trials. This narrative review provides an overview of DP/AI tools in development for NASH, highlights key regulatory considerations, and discusses how these advances may impact the future of NASH clinical management and drug development. This should be a high priority in the NASH field, particularly to improve the development of safe and effective therapeutics.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Liver/pathology , Artificial Intelligence , Biopsy , Prevalence
4.
Liver Int ; 44(2): 399-410, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38010988

ABSTRACT

BACKGROUND & AIMS: Digital pathology image analysis can phenotype liver fibrosis using histological traits that reflect collagen content, morphometry and architecture. Here, we aimed to calculate fibrosis severity scores to quantify these traits. METHODS: Liver biopsy slides were categorised by Ishak stage and aetiology. We used a digital pathology technique to calculate four fibrosis severity scores: Architecture Composite Score (ACS), Collagen Composite Score (CCS), Morphometric Composite Score (MCS) and Phenotypic Fibrosis Composite Score (PH-FCS). We compared how these scores varied according to disease stage and aetiology. RESULTS: We included 80 patients (40% female, mean age 59.0 years, mean collagen proportionate area 17.1%) with mild (F0-2, n = 28), moderate (F3-4, n = 17) or severe (F5-6, n = 35) fibrosis. All four aetiology independent scores corelated with collagen proportionate area (ACS: rp = .512, CCS: rp = .727, MCS: rp = .777, PFCS: r = .772, p < .01 for all) with significant differences between moderate and severe fibrosis (p < .05). ACS increased primarily between moderate and severe fibrosis (by 95% to 226% depending on underlying aetiology), whereas MCS and CCS accumulation was more varied. We used 28 qFTs that distinguished between autoimmune- and alcohol-related liver disease to generate an MCS that significantly differed between mild and severe fibrosis for these aetiologies (p < .05). CONCLUSIONS: We describe four aetiology-dependent and -independent severity scores that quantify fibrosis architecture, collagen content and fibre morphometry. This approach provides additional insight into how progression of architectural changes and accumulation of collagen may differ depending on underlying disease aetiology.


Subject(s)
Liver Diseases , Liver , Humans , Female , Middle Aged , Male , Liver/pathology , Liver Cirrhosis/pathology , Biopsy , Liver Diseases/complications , Collagen
5.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239841

ABSTRACT

Semaglutide, a glucagon-like peptide-1 receptor agonist, is an antidiabetic medication that has recently been approved for the treatment of obesity as well. Semaglutide is postulated to be a promising candidate for the treatment of non-alcoholic steatohepatitis (NASH). Here, Ldlr-/-.Leiden mice received a fast-food diet (FFD) for 25 weeks, followed by another 12 weeks on FFD with daily subcutaneous injections of semaglutide or vehicle (control). Plasma parameters were evaluated, livers and hearts were examined, and hepatic transcriptome analysis was performed. In the liver, semaglutide significantly reduced macrovesicular steatosis (-74%, p < 0.001) and inflammation (-73%, p < 0.001) and completely abolished microvesicular steatosis (-100%, p < 0.001). Histological and biochemical assessment of hepatic fibrosis showed no significant effects of semaglutide. However, digital pathology revealed significant improvements in the degree of collagen fiber reticulation (-12%, p < 0.001). Semaglutide did not affect atherosclerosis relative to controls. Additionally, we compared the transcriptome profile of FFD-fed Ldlr-/-.Leiden mice with a human gene set that differentiates human NASH patients with severe fibrosis from those with mild fibrosis. In FFD-fed Ldlr-/-.Leiden control mice, this gene set was upregulated as well, while semaglutide predominantly reversed this gene expression. Using a translational model with advanced NASH, we demonstrated that semaglutide is a promising candidate with particular potential for the treatment of hepatic steatosis and inflammation, while for the reversal of advanced fibrosis, combinations with other NASH agents may be necessary.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Liver Cirrhosis/metabolism , Fibrosis , Inflammation/metabolism , Mice, Inbred C57BL , Disease Models, Animal
6.
Sci Transl Med ; 15(677): eadd3949, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599008

ABSTRACT

Advanced hepatic fibrosis, driven by the activation of hepatic stellate cells (HSCs), affects millions worldwide and is the strongest predictor of mortality in nonalcoholic steatohepatitis (NASH); however, there are no approved antifibrotic therapies. To identify antifibrotic drug targets, we integrated progressive transcriptomic and morphological responses that accompany HSC activation in advanced disease using single-nucleus RNA sequencing and tissue clearing in a robust murine NASH model. In advanced fibrosis, we found that an autocrine HSC signaling circuit emerged that was composed of 68 receptor-ligand interactions conserved between murine and human NASH. These predicted interactions were supported by the parallel appearance of markedly increased direct stellate cell-cell contacts in murine NASH. As proof of principle, pharmacological inhibition of one such autocrine interaction, neurotrophic receptor tyrosine kinase 3-neurotrophin 3, inhibited human HSC activation in culture and reversed advanced murine NASH fibrosis. In summary, we uncovered a repertoire of antifibrotic drug targets underlying advanced fibrosis in vivo. The findings suggest a therapeutic paradigm in which stage-specific therapies could yield enhanced antifibrotic efficacy in patients with advanced hepatic fibrosis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Hepatic Stellate Cells/pathology , Autocrine Communication , Fibrosis , Liver Cirrhosis/pathology , Liver
7.
J Contam Hydrol ; 250: 104056, 2022 10.
Article in English | MEDLINE | ID: mdl-35933846

ABSTRACT

Thermal desorption is a method of soil treatment that heats soil in order to vaporize and extract contaminants. It relies on temperature measurements to assess the progress of the remediation, but these measurements are generally not numerous because of cost constraints. This paper proposes a low-complexity method to interpolate sparse temperature data over the whole site to generate visual representations that ease the treatment follow-up. The temperatures of the points that are not monitored are approximated by a weighted average of the 3 closest measurements, then a third-degree polynomial is fitted to the data via a finite element method. The resulting approximations yield an overall Root Mean Square Error (RMSE) of the temperature estimation of 35 K, which allows for realistic representations of the temperature at each point of the map with reduced sensor deployment.


Subject(s)
Soil Pollutants , Soil , Algorithms , Follow-Up Studies , Soil Pollutants/analysis , Temperature
8.
Metabolism ; 117: 154707, 2021 04.
Article in English | MEDLINE | ID: mdl-33444606

ABSTRACT

BACKGROUND: Cardiovascular disease is the leading cause of deaths in nonalcoholic steatohepatitis (NASH) patients. Mouse models, while widely used for drug development, do not fully replicate human NASH nor integrate the associated cardiac dysfunction, i.e. heart failure with preserved ejection fraction (HFpEF). To overcome these limitations, we established a nutritional hamster model developing both NASH and HFpEF. We then evaluated the effects of the dual peroxisome proliferator activated receptor alpha/delta agonist elafibranor developed for the treatment of NASH patients. METHODS: Male Golden Syrian hamsters were fed for 10 to 20 weeks with a free choice diet, which presents hamsters with a choice between control chow diet with normal drinking water or a high fat/high cholesterol diet with 10% fructose enriched drinking water. Biochemistry, histology and echocardiography analysis were performed to characterize NASH and HFpEF. Once the model was validated, elafibranor was evaluated at 15 mg/kg/day orally QD for 5 weeks. RESULTS: Hamsters fed a free choice diet for up to 20 weeks developed NASH, including hepatocyte ballooning (as confirmed with cytokeratin-18 immunostaining), bridging fibrosis, and a severe diastolic dysfunction with restrictive profile, but preserved ejection fraction. Elafibranor resolved NASH, with significant reduction in ballooning and fibrosis scores, and improved diastolic dysfunction with significant reduction in E/A and E/E' ratios. CONCLUSION: Our data demonstrate that the free choice diet induced NASH hamster model replicates the human phenotype and will be useful for validating novel drug candidates for the treatment of NASH and associated HFpEF.


Subject(s)
Chalcones/pharmacology , Diet, High-Fat/adverse effects , Heart Failure/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Propionates/pharmacology , Animals , Cholesterol/metabolism , Disease Models, Animal , Fructose/metabolism , Heart Failure/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Liver/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Male , Mesocricetus , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/metabolism , PPAR delta/metabolism
9.
World J Gastroenterol ; 24(2): 195-210, 2018 Jan 14.
Article in English | MEDLINE | ID: mdl-29375205

ABSTRACT

AIM: To characterize the efficacy of the dual FXR/TGR5 receptor agonist INT-767 upon histological endpoints in a rodent model of diet-induced and biopsy-confirmed non-alcoholic steatohepatitis (NASH). METHODS: The effects of INT-767 on histological features of NASH were assessed in two studies using Lepob/ob (ob/ob) NASH mice fed the AMLN diet (high fat with trans-fat, cholesterol and fructose). In a proof-of-concept study, Lepob/ob (ob/ob) NASH mice were first dosed with INT-767 (3 or 10 mg/kg for 8 wk). A second ob/ob NASH study compared INT-767 (3 and 10 mg/kg) to obeticholic acid (OCA) (10 or 30 mg/kg; 16 wk). Primary histological endpoints included qualitative and quantitative assessments of NASH. Other metabolic and plasma endpoints were also assessed. A comparative assessment of INT-767 and OCA effects on drug distribution and hepatic gene expression was performed in C57Bl/6 mice on standard chow. C57Bl/6 mice were orally dosed with INT-767 or OCA (1-30 mg/kg) for 2 wk, and expression levels of candidate genes were assessed by RNA sequencing and tissue drug levels were measured by liquid chromatography tandem-mass spectrometry. RESULTS: INT-767 dose-dependently (3 and 10 mg/kg, PO, QD, 8 wk) improved qualitative morphometric scores on steatohepatitis severity, inflammatory infiltrates and fibrosis stage. Quantitative morphometric analyses revealed that INT-767 reduced parenchymal collagen area, collagen fiber density, inflammation (assessed by Galectin-3 immunohistochemistry) and hepatocyte lipid droplet area following INT-767 treatment. In a comparative study (16 wk), the FXR agonists OCA (10 and 30 mg/kg) and INT-767 (3 and 10 mg/kg) both improved NASH histopathology, with INT-767 exerting greater therapeutic potency and efficacy than OCA. Mechanistic studies suggest that both drugs accumulate similarly within the liver and ileum, however, the effects of INT-767 may be driven by enhanced hepatic, but not ileal, FXR function. CONCLUSION: These findings confirm the potential utility of FXR and dual FXR/TGR5 activation as disease intervention strategies in NASH.


Subject(s)
Bile Acids and Salts/pharmacology , Diet, High-Fat , Liver/drug effects , Non-alcoholic Fatty Liver Disease/prevention & control , Obesity/drug therapy , Animals , Bile Acids and Salts/metabolism , Chromatography, High Pressure Liquid , Disease Models, Animal , Dose-Response Relationship, Drug , Gene Expression Regulation , Liver/metabolism , Liver/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/prevention & control , Mice, Inbred C57BL , Mice, Obese , Microscopy, Fluorescence, Multiphoton , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Proof of Concept Study , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Tandem Mass Spectrometry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...