Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Nutr Food Res ; 68(4): e2300148, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38085111

ABSTRACT

SCOPE: To analyze the effects of fexaramine (FEX), as an intestinal FXR agonist, on the modulation of the intestinal microbiota and ileum of mice fed a high-fat (HF) diet. METHODS AND RESULTS: Three-month-old C57Bl/6 male mice are divided into two groups and received a control (C, 10% of energy from lipids) or HF (50% of energy from lipids) diet for 12 weeks. They are subdivided into the C, C + FEX, HF, and HF + FEX groups. FEX is administered (FEX-5 mg kg-1 ) via orogastric gavage for three weeks. Body mass (BM), glucose metabolism, qPCR 16S rRNA gene expression, and ileum gene expression, bile acids (BAs), tight junctions (TJs), and incretin are analyzed. FEX reduces BM and glucose intolerance, reduces plasma lipid concentrations and the Firmicutes/Bacteroidetes ratio, increases the Lactobacillus sp. and Prevotella sp. abundance, and reduces the Escherichia coli abundance. Consequently, the ileal gene expression of Fxr-Fgf15, Tgr5-Glp1, and Cldn-Ocldn-Zo1 is increased, and Tlr4-Il6-Il1beta is decreased. CONCLUSION: FEX stimulates intestinal FXR and improves dysbiosis, intestinal TJs, and the release of incretins, mitigating glucose intolerance and BM increases induced by an HF diet. However, FEX results in glucose intolerance, insulin resistance, and reduces intestinal TJs in a control group, thus demonstrating limitations to this dietary model.


Subject(s)
Glucose Intolerance , Mice , Male , Animals , Glucose Intolerance/drug therapy , Diet, High-Fat/adverse effects , Dysbiosis/drug therapy , RNA, Ribosomal, 16S , Tight Junctions , Inflammation/drug therapy , Lipids , Mice, Inbred C57BL , Bile Acids and Salts
2.
Article in English | MEDLINE | ID: mdl-35111238

ABSTRACT

Aims. The cardiobenefits of empagliflozin are multidimensional, and some mechanisms are still unclear. The aim of the present study was to evaluate the effect of treatment with empagliflozin on biometric parameters and gene expression in the local cardiac RAS, oxidative stress, and endoplasmic reticulum pathways in a mouse model. Main Methods. Forty male C57BL/6 mice were fed with control (C) or high-fat (HF) diets for 10 weeks. After that, the groups were redistributed according to the treatment with empagliflozin-CE or HFE. The empagliflozin was administered via food for 5 weeks (10 mg/kg/day). We performed biochemical analyses, blood pressure monitoring, oral glucose tolerance test, left ventricle (LV) stereology, RT-qPCR for genes related to classical and counterregulatory local RAS, oxidative stress, and endoplasmic reticulum stress. Key Findings. In comparison to HF, HFE decreased body mass and improved glucose intolerance and insulin resistance. The cardiac parameters were enhanced after treatment as expressed by decrease in plasma cholesterol, plasma uric acid, and systolic blood pressure. In addition, LV analysis showed that empagliflozin reduces cardiomyocyte area and LV thickness. The local RAS had less activity of the classical pathway and positive effects on the counterregulatory pathway. Empagliflozin treatment also decreased oxidative stress and endoplasmic reticulum stress-related genes. Significance. Our results suggests that empagliflozin modulates the local RAS pathway towards alleviation of oxidative stress and ER stress in the LV, which may be a route to its effects on improved cardiac remodeling.


Subject(s)
Benzhydryl Compounds/therapeutic use , Cardiomegaly/drug therapy , Glucosides/therapeutic use , Heart Ventricles , Angiotensins , Animals , Hypertrophy , Male , Mice , Mice, Inbred C57BL , Renin
3.
Mol Cell Endocrinol ; 498: 110539, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31419466

ABSTRACT

AIM: To evaluate the pleiotropic effects of empagliflozin in the liver through lipogenesis, beta-oxidation, and endoplasmic reticulum stress pathways. METHODS: Male C57Bl/6 mice, 3 months of age, received a control diet (C, 10% lipids, n = 20) or high-fat diet (HF, 50% lipids, n = 20) for 10 weeks, after that, the groups were subdivided to receive empagliflozin, during 5 weeks at a dose of 10 mg/kg/day added to the diets, totalizing four groups: C, C-EMPA, HF, and HF-EMPA. We performed biochemical analyzes, oral glucose tolerance test, homeostasis model assessment of insulin resistance (HOMA-IR), indirect calorimetry, liver stereology, western blotting, RT-qPCR for genes related to beta-oxidation, lipogenesis, and endoplasmic reticulum stress. RESULTS: After the treatment with empagliflozin, there was a 4% increase in energy expenditure, a 5% reduction in body mass, improvement in glucose tolerance and insulin sensitivity and insulin resistance. The expression of Ppar alpha was greater in the HF-EMPA group with a concomitant reduction in the expression of the lipogenic genes Fas, Srebp1c and Ppar gamma, according to protein expression. In addition, HF-EMPA showed a reduction in the genes related to endoplasmic reticulum stress Chop, Atf4, and Gadd45. CONCLUSION: Empagliflozin mitigates the development of NAFLD, confirmed through reduced expression of the genes involved in hepatic lipogenesis and genes involved in endoplasmic reticulum stress. Thus, empagliflozin may be an important tool to treat the progression of hepatic steatosis.


Subject(s)
Benzhydryl Compounds/pharmacology , Diet, High-Fat/adverse effects , Endoplasmic Reticulum Stress/drug effects , Glucosides/pharmacology , Insulin Resistance , Lipogenesis/drug effects , Non-alcoholic Fatty Liver Disease/prevention & control , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Animals , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...