Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(6)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070269

ABSTRACT

The ferns Asplenium ceterach L., Asplenium scolopendrium L. and Asplenium trichomanes L. have wide application in traditional medicine worldwide. However, the scientific research on their anticancer and antibacterial properties is insufficient. The present article aims to provide more information on this topic. Extracts derived from the aerial parts of A. ceterach, A. scolopendrium and A. trichomanes were examined using a panel of in vitro assays with different bacterial and mammalian cells. The cytotoxicity and anticancer activity of the samples were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Trypan blue assays with three human (A549, FL, HeLa) and three murine (3T3, TIB-71, LS48) cell lines. Inhibitory effects on the growth of Gram-positive (Bacillus cereus) and Gram-negative (Pseudomonas aeruginosa) bacteria were determined by the agar diffusion assay. Apoptosis-inducing properties of the extracts were analyzed by flow cytometry. Superoxide dismutase (SOD) activity in extract-treated cells was investigated by ELISA. The obtained results demonstrate selective anticancer activity of all three Asplenium species. The extract from A. ceterach displayed the strongest inhibitory properties against human cervical cancer cells and bacterial cells. It induced a lower level of cytotoxicity against mouse cell lines, indicating a species-specific effect. The extract from A. trichomanes demonstrated better anticancer and antibacterial properties than the sample from A. scolopendrium. Further experiments linked the mechanism of action of A. ceterach extract with oxidative stress-inducing potential and strong proapoptotic potential against the cervical cancer cell line HeLa. A. trichomanes and A. scolopendrium extracts appeared to be potent inducers of necrotic cell death.

2.
Z Naturforsch C J Biosci ; 76(9-10): 367-373, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-33823097

ABSTRACT

This study reports the effects of aqueous extracts obtained from three fern species of Bulgarian origin: Asplenium ceterach L., Asplenium scolopendrium L., and Asplenium trichomanes L. on the contractility and bioelectrogenesis of rat gastric smooth muscle tissues. In the concentration range 0.015-0.150 mg/mL the three extracts contracted smooth muscle tissues in a concentration-dependent manner. The contractions caused by A. ceterach L. and A. scolopendrium L. extracts (0.150 mg/mL) were reduced by ketanserin (5 × 10-7 and 5 × 10-6 mol/L), an antagonist of serotonin 5-HT2 receptor. The contraction evoked by A. trichomanes L. (0.150 mg/mL) was significantly reduced by 1 × 10-6 mol/L atropine, an antagonist of muscarinic receptors, and turned into relaxation against the background of 3 × 10-7 mol/L galantamine. After combined pretreatment with galantamine and l-arginine (5 × 10-4 mol/L), this relaxation become more pronounced. The study demonstrates that constituents of A. ceterach L. and A. scolopendrium L. extracts act as agonists of 5-HT2 receptors and cause contraction by activating serotonergic signaling system. A. trichomanes L.-induced reaction is an additive result of two opposite-in-character effects. The dominant contraction is initiated by inhibition of acetylcholinesterase activity. The relaxation develops with pre-inhibited acetylcholinesterase, it is significantly potentiated by l-arginine, and therefore associated with nitrergic signaling pathway.


Subject(s)
Plant Extracts/pharmacology , Polypodiaceae/chemistry , Animals , Cholinesterase Inhibitors/pharmacology , Male , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Polypodiaceae/classification , Rats , Rats, Wistar , Receptors, Serotonin, 5-HT2/drug effects , Serotonin Receptor Agonists/pharmacology , Species Specificity
3.
MethodsX ; 7: 100995, 2020.
Article in English | MEDLINE | ID: mdl-32760660

ABSTRACT

Most of the commonly applied assays used to assess antioxidant properties of plant extracts exploit the ability of some biologically active metabolites to participate in oxidation-reduction reactions with metal ions. On the other hand, most plants contain different chelated metal ions whose levels depend on the geographic origin, soil, and environmental pollutions. In this study the levels of redox-active metal ions in three plant sources were measured and extracts of these botanicals were treated with ChelexⓇ - an ion exchanger that is noteworthy for its ability to bind transition metal ions. The original and chelated extracts were subjected to three antioxidant assays based on single electron transfer. The results obtained showed statistically significant differences between the original and Chelex-treated extracts suggesting that the naturally present metal ions could interfere with the results of the three most commonly applied antioxidant methods.•The proposed pre-analytical procedure is simple and does not require special instrumental equipment.•Preliminary depletion of redox active metal ions, namely iron and copper ions could improve reproducibility of the analytical methods.•The method allows a more reliable comparison of antioxidant properties of particular botanical species from different geographic regions.

4.
Biol Cybern ; 104(4-5): 263-96, 2011 May.
Article in English | MEDLINE | ID: mdl-21618053

ABSTRACT

In this article, we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results.


Subject(s)
Computers , Models, Theoretical , Nervous System
SELECTION OF CITATIONS
SEARCH DETAIL
...