Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Biol ; 97(9): 1229-1240, 2021.
Article in English | MEDLINE | ID: mdl-34187289

ABSTRACT

PURPOSE: The complex relationship between linear energy transfer (LET) and cellular response to radiation is not yet fully elucidated. To better characterize DNA damage after irradiations with therapeutic protons, we monitored formation and disappearance of DNA double-strand breaks (DNA DSB) as a function of LET and time. Comparisons with conventional γ-rays and high LET carbon ions were also performed. MATERIALS AND METHODS: In the present work, we performed immunofluorescence-based assay to determine the amount of DNA DSB induced by different LET values along the 62 MeV therapeutic proton Spread out Bragg peak (SOBP) in three cancer cell lines, i.e. HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells. Time dependence of foci formation was followed as well. To determine irradiation positions, corresponding to the desired LET values, numerical simulations were carried out using Geant4 toolkit. We compared γ-H2AX foci persistence after irradiations with protons to that of γ-rays and carbon ions. RESULTS: With the rise of LET values along the therapeutic proton SOBP, the increase of γ-H2AX foci number is detected in the three cell lines up to the distal end of the SOBP, while there is a decrease on its distal fall-off part. With the prolonged incubation time, the number of foci gradually drops tending to attain the residual level. For the maximum number of DNA DSB, irradiation with protons attain higher level than that of γ-rays. Carbon ions produce more DNA DSB than protons but not substantially. The number of residual foci produced by γ-rays is significantly lower than that of protons and particularly carbon ions. Carbon ions do not produce considerably higher number of foci than protons, as it could be expected due to their physical properties. CONCLUSIONS: In situ visualization of γ-H2AX foci reveal creation of more lesions in the three cell lines by clinically relevant proton SOBP than γ-rays. The lack of significant differences in the number of γ-H2AX foci between the proton and carbon ion-irradiated samples suggests an increased complexity of DNA lesions and slower repair kinetics after carbon ions compared to protons. For all three irradiation types, there is no major difference between the three cell lines shortly after irradiations, while later on, the formation of residual foci starts to express the inherent nature of tested cells, therefore increasing discrepancy between them.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , Linear Energy Transfer , Protons , Cell Line, Tumor , Cell Survival/radiation effects , DNA Repair/radiation effects , Dose-Response Relationship, Radiation , Humans , Relative Biological Effectiveness
2.
Molecules ; 26(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806101

ABSTRACT

Neutral [Ru(η6-arene)Cl2{Ph2P(CH2)3SPh-κP}] (arene = benzene, indane, 1,2,3,4-tetrahydronaphthalene: 2a, 2c and 2d) and cationic [Ru(η6-arene)Cl(Ph2P(CH2)3SPh-κP,κS)]X complexes (arene = mesitylene, 1,4-dihydronaphthalene; X = Cl: 3b, 3e; arene = benzene, mesitylene, indane, 1,2,3,4-tetrahydronaphthalene, and 1,4-dihydronaphthalene; X = PF6: 4a-4e) complexes were prepared and characterized by elemental analysis, IR, 1H, 13C and 31P NMR spectroscopy and also by single-crystal X-ray diffraction analyses. The stability of the complexes has been investigated in DMSO. Complexes have been assessed for their cytotoxic activity against 518A2, 8505C, A253, MCF-7 and SW480 cell lines. Generally, complexes exhibited activity in the lower micromolar range; moreover, they are found to be more active than cisplatin. For the most active ruthenium(II) complex, 4b, bearing mesitylene as ligand, the mechanism of action against 8505C cisplatin resistant cell line was determined. Complex 4b induced apoptosis accompanied by caspase activation.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms/drug therapy , Ruthenium , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Neoplasms/metabolism , Neoplasms/pathology , Ruthenium/chemistry , Ruthenium/pharmacology
3.
Int J Radiat Biol ; 96(11): 1400-1412, 2020 11.
Article in English | MEDLINE | ID: mdl-32910708

ABSTRACT

PURPOSE: Analysis of elimination of four human radioresistant malignant cell lines to mono-energetic and non mono-energetic incoming carbon ion beams, characterized by different linear energy transfer (LET) qualities is performed. Comparisons with protons from the middle of the therapeutic spread out Bragg peak (SOBP) and reference γ-rays are also included. MATERIALS AND METHODS: HTB140 cells were irradiated at five positions, with different LET, along the 62 MeV carbon pristine Bragg peak. To provide reliable reproducibility of irradiations at INFN-LNS, as the carbon Bragg peak is very narrow, precise positioning of samples for desired LET value is complicated. The peak was slightly widened using two ripple filters. After defining irradiation position and LET at the peak itself where cell killing is almost the highest, irradiation position with the same LET value was found within somewhat broadened peak. HTB140, MCF-7, HTB177 and CRL5876 cells were irradiated at the two described positions. Additionally, irradiations in the middle of 62 MeV proton SOBP and reference γ-rays were performed. Doses ranged from 0.5 to 16 Gy. Cell survival and corresponding radiobiological parameters were assessed seven days after irradiations. RESULTS: When moving irradiation position along the carbon Bragg curve, LET rises from 85 to 747 keV/µm, while surviving fraction at 2 Gy (SF2) for HTB140 cells, falls from 0.72 to 0.57 further rising to 0.73 on the distal fall-off part of the curve. Improved cell radiosensitivity is seen for the doses below 4 Gy. Relative biological effectiveness (RBE) increases from 4.56 to 7.69 and drops to 4.23. Almost the highest cell killing LET, being ∼200 keV/µm, is used to irradiate HTB140, MCF-7, HTB177 and CRL5876 cells within the pristine and slightly broadened Bragg peak. After irradiations with protons of the mid SOBP, carbon ions of the pristine and slightly widened Bragg peak RBE ranges for HTB140 cells from 2.08, 4.81 to 7.06, for MCF-7 from 1.70, 3.28 to 4.17, for HTB177 from 1.98, 4.18 to 5.08 and for CRL5876 from 1.33, 2.57 to 3.51. CONCLUSIONS: Significant elimination of HTB140 cells is observed along the carbon Bragg curve. The highest one is achieved by LET that is at the level of already reported. For the same LET, mono-energetic carbon ions provide higher cell elimination than the non mono-energetic. For all cell lines, both carbon ion beams, more the monoenergetic one, express stronger killing rate than protons and especially γ-rays.


Subject(s)
Carbon/pharmacology , Linear Energy Transfer/radiation effects , Radiation Tolerance , Radiobiology , Cell Line, Tumor , Humans
4.
Anticancer Res ; 40(9): 5001-5013, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32878788

ABSTRACT

AIM: Newly synthesized platinum(IV) complexes with ethylenediamine-N,N'-diacetate ligands (EDDA-type) (butyl-Pt and pentyl-Pt) were investigated against two cancer (A549 lung, and HTB 140 melanoma) and one non-cancerous (MRC-5 embryonic lung fibroblast) human cell lines. MATERIALS AND METHODS: The effects of these agents were compared with those of cisplatin after 6-, 24- and 48-h treatment. Sulforhodamine-B (SRB) assay was performed to estimate the cytotoxic effect, while the inhibitory effect on cell proliferation was measured using 5-bromo-2,-deoxyuridine (BrdU) incorporation assay. Cell cycle analysis was performed by flow cytometry. Type of cell death induced by these agents was determined by electrophoretic analysis of DNA, flow cytometry and by western blot analysis of proteins involved in induction of apoptosis. The effects of gamma irradiation, alone and in combination with platinum-based compounds, were examined by clonogenic and SRB assays. RESULTS: All examined platinum-based compounds had inhibitory and antiproliferative effects on A549 cells, but not on HTB140 and MRC-5 cells. Butyl-Pt, pentyl-Pt and cisplatin arrested the cell cycle in the S-phase and induced apoptotic cell death via regulation of expression of B-cell lymphoma 2 (BCL2) and BCL2-associated X (BAX) proteins. Platinum-based compounds increased the sensitivity of A549 cells to gamma irradiation. Butyl-Pt and pentyl-Pt showed better antitumour effects against A549 cells than did cisplatin, by interfering in cell proliferation and the cell cycle, and by triggering apoptosis. CONCLUSION: The effects of gamma irradiation on tumour cells may be amplified by pre-treatment of cells with platinum-based compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Organoplatinum Compounds/pharmacology , Radiation-Sensitizing Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Cisplatin/pharmacology , Dose-Response Relationship, Drug , Edetic Acid/analogs & derivatives , Edetic Acid/chemistry , Gamma Rays , Humans , Inhibitory Concentration 50 , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/chemistry , Radiation-Sensitizing Agents/chemical synthesis , Radiation-Sensitizing Agents/chemistry
5.
Mater Sci Eng C Mater Biol Appl ; 100: 315-322, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30948067

ABSTRACT

Herein appropriateness of nonfunctionalized mesoporous silica nanoparticles SBA-15 and functionalized with (3-chloropropyl)triethoxysilane (→ SBA-15~Cl) and (3-aminopropyl)triethoxysilane (→ SBA-15~NH2) on delivery of physically adsorbed Ph3Sn(CH2)6OH (Sn6) is evaluated. Fluorescent nanomaterial, bearing isatoic moiety, loaded with Sn6 (→ SBA-15~NF|Sn6) was used for cellular uptake study. The fluorescent nanomaterial is efficiently acquired and distributed into the cytoplasm of the cells even after 2 h of cultivation. According to the attained data, all SBA-15 materials loaded with Sn6 diminished cellular viability in dose dependent manner while carriers alone (SBA-15, SBA-15~Cl, SBA-15~NH2) did not show cytotoxicity against B16 cells. According to the MC50 values structural modification of SBA-15 did not improve the efficacy of tested drug. While progressive apoptosis was detected upon the treatment with SBA-15|Sn6, exposure of cells to SBA-15~NH2|Sn6 revealed extinguished apoptosis in time, accompanied with lower caspase activity. This effect is probably due to triggered autophagic process under the treatment with the SBA-15~NH2|Sn6, thus opposed to apoptosis. Presented results suggested that functionalization of SBA-15 was not beneficial for the efficacy of loaded drug, thus, all of them are almost equally efficient considering loaded Sn6 content. Importantly, functionalization of SBA-15 does have an influence on the mode of action and differentiation inducing properties.


Subject(s)
Organotin Compounds/chemistry , Silicon Dioxide/chemistry , Anhydrides/chemistry , Animals , Fluorescent Dyes/chemistry , Mice , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Porosity , Propylamines/chemistry , Silanes/chemistry , ortho-Aminobenzoates/chemistry
6.
Int J Radiat Biol ; 95(3): 274-285, 2019 03.
Article in English | MEDLINE | ID: mdl-30451568

ABSTRACT

PURPOSE: Investigation of effects on DNA of γ-irradiated human cancer cells pretreated with free radical scavengers is aimed to create reference data which would enable assessment of the relative efficiency of high linear energy transfer (LET) radiations used in hadron therapy, i.e. protons and carbon ions. MATERIALS AND METHODS: MCF-7 breast and HTB177 lung cancer cells are irradiated with γ-rays. To minimize indirect effects of irradiation, dimethyl sulfoxide (DMSO) or glycerol are applied as free radical scavengers. Biological response to irradiation is evaluated through clonogenic cell survival, immunocytochemical and cell cycle analysis, as well as expression of proteins involved in DNA damage response. RESULTS: Examined cell lines reveal similar level of radioresistance. Application of scavengers leads to the rise of cell survival and decreases the number of DNA double strand breaks in irradiated cells. Differences in cell cycle and protein expression between the two cell lines are probably caused by different DNA damage repair mechanisms that are activated. CONCLUSION: The obtained results show that DMSO and glycerol have good scavenging capacity, and may be used to minimize DNA damage induced by free radicals. Therefore, they will be used as the reference for comparison with high LET irradiations, as well as good experimental data suitable for validation of numerical simulations.


Subject(s)
Breast Neoplasms/pathology , DNA Damage , Free Radical Scavengers/pharmacology , Gamma Rays , Lung Neoplasms/pathology , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Cycle/drug effects , Cell Cycle/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , DNA Repair/drug effects , DNA Repair/radiation effects , Humans , MCF-7 Cells
7.
J Inorg Biochem ; 180: 155-162, 2018 03.
Article in English | MEDLINE | ID: mdl-29288894

ABSTRACT

SBA-15 (Santa Barbara Amorphous 15) mesoporous silica and its functionalized form (with 3-mercaptopropyltriethoxysilane) SBA-15~SH were used as carriers for [Ru(η6-p-cymene)Cl2{Ph2P(CH2)3SPh-κP}] complex, denoted as [Ru]. Prepared mesoporous silica nanomaterials were characterized by traditional methods. Materials without [Ru] complex did not show any cytotoxic activity against melanoma B16 and B16-F10 cell lines. On the contrary, materials containing [Ru] such as SBA-15|[Ru] and SBA-15~SH|[Ru], exhibited very high activity against tested tumor cell lines, moreover with similar inhibitory potential. According to the loaded amount of the [Ru] in SBA-15|[Ru] and SBA-15~SH|[Ru] the IC50 values are 1-2µM depending on the test used, thus in comparison to [Ru] alone the activity of nanomaterials containing [Ru] are elevated 3-6 times in vitro. However, the mechanism of apoptosis induction differs for these two mesoporous silica. Unlike reference [Ru] compound and SBA-15~SH|[Ru], SBA-15|[Ru] induces high caspase activation. Discrepancy in mechanism of drugs action at intracellular level points towards an influence of functionalization as well as availability of the drug. Moreover, both SBA-15|[Ru] and SBA-15~SH|[Ru] similarly to [Ru] are declining autophagy in B16 cell line.


Subject(s)
Ruthenium Compounds/chemistry , Silicon Dioxide/chemistry , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Drug Carriers , Drug Screening Assays, Antitumor , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Melanoma, Experimental/pathology , Mice , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanostructures , Organosilicon Compounds , Porosity , Ruthenium Compounds/pharmacology , Silanes/chemistry , Spectrometry, X-Ray Emission , Spectrophotometry, Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...