Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 13823, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879676

ABSTRACT

Exoplanet atmospheres are expected to vary significantly in thickness and chemical composition, leading to a continuum of differences in surface pressure and atmospheric density. This variability is exemplified within our Solar System, where the four rocky planets exhibit surface pressures ranging from 1 nPa on Mercury to 9.2 MPa on Venus. The direct effects and potential challenges of atmospheric pressure and density on life have rarely been discussed. For instance, atmospheric density directly affects the possibility of active flight in organisms, a critical factor since without it, dispersing across extensive and inhospitable terrains becomes a major limitation for the expansion of complex life. In this paper, we propose the existence of a critical atmospheric density threshold below which active flight is unfeasible, significantly impacting biosphere development. To qualitatively assess this threshold and differentiate it from energy availability constraints, we analyze the limits of active flight on Earth, using the common fruit fly, Drosophila melanogaster, as a model organism. We subjected Drosophila melanogaster to various atmospheric density scenarios and reviewed previous data on flight limitations. Our observations show that flies in an N2-enriched environment recover active flying abilities more efficiently than those in a helium-enriched environment, highlighting behavioral differences attributable to atmospheric density vs. oxygen deprivation.

2.
Life (Basel) ; 14(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38792560

ABSTRACT

We show that the nucleic acid bases adenine, cytosine, guanine, thymine, and uracil, as well as 2,6-diaminopurine, and the "core" nucleic acid bases purine and pyrimidine, are stable for more than one year in concentrated sulfuric acid at room temperature and at acid concentrations relevant for Venus clouds (81% w/w to 98% w/w acid, the rest water). This work builds on our initial stability studies and is the first ever to test the reactivity and structural integrity of organic molecules subjected to extended incubation in concentrated sulfuric acid. The one-year-long stability of nucleic acid bases supports the notion that the Venus cloud environment-composed of concentrated sulfuric acid-may be able to support complex organic chemicals for extended periods of time.

3.
Astrobiology ; 24(4): 343-370, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452176

ABSTRACT

Long-standing unexplained Venus atmosphere observations and chemical anomalies point to unknown chemistry but also leave room for the possibility of life. The unexplained observations include several gases out of thermodynamic equilibrium (e.g., tens of ppm O2, the possible presence of PH3 and NH3, SO2 and H2O vertical abundance profiles), an unknown composition of large, lower cloud particles, and the "unknown absorber(s)." Here we first review relevant properties of the venusian atmosphere and then describe the atmospheric chemical anomalies and how they motivate future astrobiology missions to Venus.


Subject(s)
Venus , Exobiology , Extraterrestrial Environment , Gases/chemistry , Atmosphere/chemistry
4.
Astrobiology ; 24(4): 386-396, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38498680

ABSTRACT

Scientists have long speculated about the potential habitability of Venus, not at the 700K surface, but in the cloud layers located at 48-60 km altitudes, where temperatures match those found on Earth's surface. However, the prevailing belief has been that Venus' clouds cannot support life due to the cloud chemical composition of concentrated sulfuric acid-a highly aggressive solvent. In this work, we study 20 biogenic amino acids at the range of Venus' cloud sulfuric acid concentrations (81% and 98% w/w, the rest water) and temperatures. We find 19 of the biogenic amino acids we tested are either unreactive (13 in 98% w/w and 12 in 81% w/w) or chemically modified in the side chain only, after 4 weeks. Our major finding, therefore, is that the amino acid backbone remains intact in concentrated sulfuric acid. These findings significantly broaden the range of biologically relevant molecules that could be components of a biochemistry based on a concentrated sulfuric acid solvent.


Subject(s)
Venus , Amino Acids , Atmosphere/chemistry , Solvents , Sulfuric Acids/chemistry
5.
Astrobiology ; 24(4): 371-385, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37306952

ABSTRACT

Venus is Earth's sister planet, with similar mass and density but an uninhabitably hot surface, an atmosphere with a water activity 50-100 times lower than anywhere on Earths' surface, and clouds believed to be made of concentrated sulfuric acid. These features have been taken to imply that the chances of finding life on Venus are vanishingly small, with several authors describing Venus' clouds as "uninhabitable," and that apparent signs of life there must therefore be abiotic, or artefactual. In this article, we argue that although many features of Venus can rule out the possibility that Earth life could live there, none rule out the possibility of all life based on what we know of the physical principle of life on Earth. Specifically, there is abundant energy, the energy requirements for retaining water and capturing hydrogen atoms to build biomass are not excessive, defenses against sulfuric acid are conceivable and have terrestrial precedent, and the speculative possibility that life uses concentrated sulfuric acid as a solvent instead of water remains. Metals are likely to be available in limited supply, and the radiation environment is benign. The clouds can support a biomass that could readily be detectable by future astrobiology-focused space missions from its impact on the atmosphere. Although we consider the prospects for finding life on Venus to be speculative, they are not absent. The scientific reward from finding life in such an un-Earthlike environment justifies considering how observations and missions should be designed to be capable of detecting life if it is there.


Subject(s)
Venus , Planets , Sulfuric Acids , Water
6.
Life (Basel) ; 13(12)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38137926

ABSTRACT

Isotopologue ratios are anticipated to be one of the most promising signs of life that can be observed remotely. On Earth, carbon isotopes have been used for decades as evidence of modern and early metabolic processes. In fact, carbon isotopes may be the oldest evidence for life on Earth, though there are alternative geological processes that can lead to the same magnitude of fractionation. However, using isotopologues as biosignature gases in exoplanet atmospheres presents several challenges. Most significantly, we will only have limited knowledge of the underlying abiotic carbon reservoir of an exoplanet. Atmospheric carbon isotope ratios will thus have to be compared against the local interstellar medium or, better yet, their host star. A further substantial complication is the limited precision of remote atmospheric measurements using spectroscopy. The various metabolic processes that cause isotope fractionation cause less fractionation than anticipated measurement precision (biological fractionation is typically 2 to 7%). While this level of precision is easily reachable in the laboratory or with special in situ instruments, it is out of reach of current telescope technology to measure isotope ratios for terrestrial exoplanet atmospheres. Thus, gas isotopologues are poor biosignatures for exoplanets given our current and foreseeable technological limitations.

7.
Sci Rep ; 13(1): 13576, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37604949

ABSTRACT

Waste gas products from technological civilizations may accumulate in an exoplanet atmosphere to detectable levels. We propose nitrogen trifluoride (NF3) and sulfur hexafluoride (SF6) as ideal technosignature gases. Earth life avoids producing or using any N-F or S-F bond-containing molecules and makes no fully fluorinated molecules with any element. NF3 and SF6 may be universal technosignatures owing to their special industrial properties, which unlike biosignature gases, are not species-dependent. Other key relevant qualities of NF3 and SF6 are: their extremely low water solubility, unique spectral features, and long atmospheric lifetimes. NF3 has no non-human sources and was absent from Earth's pre-industrial atmosphere. SF6 is released in only tiny amounts from fluorine-containing minerals, and is likely produced in only trivial amounts by volcanic eruptions. We propose a strategy to rule out SF6's abiotic source by simultaneous observations of SiF4, which is released by volcanoes in an order of magnitude higher abundance than SF6. Other fully fluorinated human-made molecules are of interest, but their chemical and spectral properties are unavailable. We summarize why life on Earth-and perhaps life elsewhere-avoids using F. We caution, however, that we cannot definitively disentangle an alien biochemistry byproduct from a technosignature gas.

8.
Proc Natl Acad Sci U S A ; 120(25): e2220007120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307485

ABSTRACT

What constitutes a habitable planet is a frontier to be explored and requires pushing the boundaries of our terracentric viewpoint for what we deem to be a habitable environment. Despite Venus' 700 K surface temperature being too hot for any plausible solvent and most organic covalent chemistry, Venus' cloud-filled atmosphere layers at 48 to 60 km above the surface hold the main requirements for life: suitable temperatures for covalent bonds; an energy source (sunlight); and a liquid solvent. Yet, the Venus clouds are widely thought to be incapable of supporting life because the droplets are composed of concentrated liquid sulfuric acid-an aggressive solvent that is assumed to rapidly destroy most biochemicals of life on Earth. Recent work, however, demonstrates that a rich organic chemistry can evolve from simple precursor molecules seeded into concentrated sulfuric acid, a result that is corroborated by domain knowledge in industry that such chemistry leads to complex molecules, including aromatics. We aim to expand the set of molecules known to be stable in concentrated sulfuric acid. Here, we show that nucleic acid bases adenine, cytosine, guanine, thymine, and uracil, as well as 2,6-diaminopurine and the "core" nucleic acid bases purine and pyrimidine, are stable in sulfuric acid in the Venus cloud temperature and sulfuric acid concentration range, using UV spectroscopy and combinations of 1D and 2D 1H 13C 15N NMR spectroscopy. The stability of nucleic acid bases in concentrated sulfuric acid advances the idea that chemistry to support life may exist in the Venus cloud particle environment.


Subject(s)
Bivalvia , Venus , Adenine , Aggression , Sulfuric Acids
9.
Nanotechnology ; 34(17)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36640445

ABSTRACT

In our previous paper we have modelled a dielectrophoretic force (DEP) and cell particle behavior in a microfluidic channel (Weber MUet al2023 Chip for dielectrophoretic microbial capture, separation and detection I: theoretical basis of electrode designNanotechnologythis issue). Here we test and confirm the results of our modeling work by experimentally validating the theoretical design constraints of the ring electrode architecture. We have compared and tested the geometry and particle capture and separation performance of the two separate electrode designs (the ring and dot electrode structures) by investigating bacterial motion in response to the applied electric field. We have quantitatively evaluated the electroosmosis (EO) to positive DEP (PDEP) transition in both electrode designs and explained the differences in capture efficiency of the ring and dot electrode systems. The ring structure shows 99% efficiency of bacterial capture both for PDEP and for EO. Moreover, the ring structure shows an over 200 faster bacterial response to the electric field. We have also established that the ring electrode architecture, with appropriate structure periodicity and spacing, results in efficient capture and separation of microbial cells. We have identified several critical design constraints that are required to achieve high efficiency bacterial capture. We have established that the spacing between consecutive DEP traps smaller than the length of the depletion zone will ensure that the DEP force dominates bacterial motion over motility and Brownian motion.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Electrophoresis/methods , Microfluidics/methods , Electrodes , Microfluidic Analytical Techniques/methods , Cell Separation/methods
10.
Nanotechnology ; 34(13)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36571849

ABSTRACT

We model the dielectrophoretic response ofE. colibacterial cells and red blood cells, upon exposure to an electric field. We model the separation, capture, and release mechanisms under flow conditions in a microfluidic channel and show under which conditions efficient separation of different cell types occurs. The modelling work is aimed to guide the separation electrode architecture and design for experimental validation of the model. The dielectrophoretic force is affected both by the geometry of the electrodes (the gradient of the electric field), the Re{CM(ω)} factor, and the permittivity of the medium ϵm. Our modelling makes testable predictions and shows that designing the electrode structure to ensure structure periodicity with spacing between consecutive traps smaller than the length of the depletion zone ensures efficient capture and separation. Such electrode system has higher capture and separation efficiency than systems with the established circular electrode architecture. The simulated, modelled microfluidic design allows for the separated bacteria, concentrated by dedicated dielectrophoretic regions, to be subsequently detected using label-free functionalized nanowire sensors. The experimental validation of the modelling work presented here and the validation of the theoretical design constraints of the chip electrode architecture is presented in the companion paper in the same issue (Weber MUet al2022 Chip for dielectrophoretic Microbial Capture, Separation and Detection II: Experimental Study).


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Electrodes , Electricity , Bacteria , Cell Separation , Electrophoresis
12.
Astrobiology ; 22(2): 171-191, 2022 02.
Article in English | MEDLINE | ID: mdl-35099265

ABSTRACT

Ammonia (NH3) in a terrestrial planet atmosphere is generally a good biosignature gas, primarily because terrestrial planets have no significant known abiotic NH3 source. The conditions required for NH3 to accumulate in the atmosphere are, however, stringent. NH3's high water solubility and high biousability likely prevent NH3 from accumulating in the atmosphere to detectable levels unless life is a net source of NH3 and produces enough NH3 to saturate the surface sinks. Only then can NH3 accumulate in the atmosphere with a reasonable surface production flux. For the highly favorable planetary scenario of terrestrial planets with hydrogen (H2)-dominated atmospheres orbiting M dwarf stars (M5V), we find that a minimum of about 5 ppm column-averaged mixing ratio is needed for NH3 to be detectable with JWST, considering a 10 ppm JWST systematic noise floor. When the surface is saturated with NH3 (i.e., there are no NH3-removal reactions on the surface), the required biological surface flux to reach 5 ppm is on the order of 1010 molecules/(cm2·s), comparable with the terrestrial biological production of methane (CH4). However, when the surface is unsaturated with NH3, due to additional sinks present on the surface, life would have to produce NH3 at surface flux levels on the order of 1015 molecules/(cm2·s) (∼4.5 × 106 Tg/year). This value is roughly 20,000 times greater than the biological production of NH3 on the Earth and about 10,000 times greater than Earth's CH4 biological production. Volatile amines have similar solubilities and reactivities to NH3 and hence share NH3's weaknesses and strengths as a biosignature. Finally, to establish NH3 as a biosignature gas, we must rule out mini-Neptunes with deep atmospheres, where temperatures and pressures are high enough for NH3's atmospheric production.


Subject(s)
Exobiology , Extraterrestrial Environment , Ammonia , Atmosphere , Planets
13.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Article in English | MEDLINE | ID: mdl-34930842

ABSTRACT

The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O2 in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO2 and H2O. We propose a hypothesis for the chemistry in the clouds that largely addresses all of the above anomalies. We include ammonia (NH3), a key component that has been tentatively detected both by the Venera 8 and Pioneer Venus probes. NH3 dissolves in some of the sulfuric acid cloud droplets, effectively neutralizing the acid and trapping dissolved SO2 as ammonium sulfite salts. This trapping of SO2 in the clouds, together with the release of SO2 below the clouds as the droplets settle out to higher temperatures, explains the vertical SO2 abundance anomaly. A consequence of the presence of NH3 is that some Venus cloud droplets must be semisolid ammonium salt slurries, with a pH of ∼1, which matches Earth acidophile environments, rather than concentrated sulfuric acid. The source of NH3 is unknown but could involve biological production; if so, then the most energy-efficient NH3-producing reaction also creates O2, explaining the detection of O2 in the cloud layers. Our model therefore predicts that the clouds are more habitable than previously thought, and may be inhabited. Unlike prior atmospheric models, ours does not require forced chemical constraints to match the data. Our hypothesis, guided by existing observations, can be tested by new Venus in situ measurements.

14.
Nat Commun ; 12(1): 4696, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349113

ABSTRACT

Productive ribosomal RNA (rRNA) compaction during ribosome assembly necessitates establishing correct tertiary contacts between distant secondary structure elements. Here, we quantify the response of the yeast proteome to low temperature (LT), a condition where aberrant mis-paired RNA folding intermediates accumulate. We show that, at LT, yeast cells globally boost production of their ribosome assembly machinery. We find that the LT-induced assembly factor, Puf6, binds to the nascent catalytic RNA-rich subunit interface within the 60S pre-ribosome, at a site that eventually loads the nuclear export apparatus. Ensemble Förster resonance energy transfer studies show that Puf6 mimics the role of Mg2+ to usher a unique long-range tertiary contact to compact rRNA. At LT, puf6 mutants accumulate 60S pre-ribosomes in the nucleus, thus unveiling Puf6-mediated rRNA compaction as a critical temperature-regulated rescue mechanism that counters rRNA misfolding to prime export competence.


Subject(s)
Cell Nucleus/metabolism , RNA-Binding Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Active Transport, Cell Nucleus , Cold Temperature , GTP Phosphohydrolases/metabolism , Mutation , Protein Binding , Protein Interaction Domains and Motifs , Proteome/metabolism , RNA Folding , RNA Precursors/chemistry , RNA Precursors/metabolism , RNA, Ribosomal/chemistry , RNA, Ribosomal/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Ribosome Subunits, Large, Eukaryotic/chemistry , Ribosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
15.
Astrobiology ; 21(10): 1277-1304, 2021 10.
Article in English | MEDLINE | ID: mdl-34283644

ABSTRACT

The recent candidate detection of ∼1 ppb of phosphine in the middle atmosphere of Venus is so unexpected that it requires an exhaustive search for explanations of its origin. Phosphorus-containing species have not been modeled for Venus' atmosphere before, and our work represents the first attempt to model phosphorus species in the venusian atmosphere. We thoroughly explore the potential pathways of formation of phosphine in a venusian environment, including in the planet's atmosphere, cloud and haze layers, surface, and subsurface. We investigate gas reactions, geochemical reactions, photochemistry, and other nonequilibrium processes. None of these potential phosphine production pathways is sufficient to explain the presence of ppb phosphine levels on Venus. If PH3's presence in Venus' atmosphere is confirmed, it therefore is highly likely to be the result of a process not previously considered plausible for venusian conditions. The process could be unknown geochemistry, photochemistry, or even aerial microbial life, given that on Earth phosphine is exclusively associated with anthropogenic and biological sources. The detection of phosphine adds to the complexity of chemical processes in the venusian environment and motivates in situ follow-up sampling missions to Venus. Our analysis provides a template for investigation of phosphine as a biosignature on other worlds.


Subject(s)
Phosphines , Venus , Atmosphere , Extraterrestrial Environment
16.
Astrobiology ; 21(10): 1206-1223, 2021 10.
Article in English | MEDLINE | ID: mdl-32787733

ABSTRACT

We revisit the hypothesis that there is life in the venusian clouds to propose a life cycle that resolves the conundrum of how life can persist aloft for hundreds of millions to billions of years. Most discussions of an aerial biosphere in the venusian atmosphere temperate layers never address whether the life-small microbial-type particles-is free floating or confined to the liquid environment inside cloud droplets. We argue that life must reside inside liquid droplets such that it will be protected from a fatal net loss of liquid to the atmosphere, an unavoidable problem for any free-floating microbial life forms. However, the droplet habitat poses a lifetime limitation: Droplets inexorably grow (over a few months) to large enough sizes that are forced by gravity to settle downward to hotter, uninhabitable layers of the venusian atmosphere. (Droplet fragmentation-which would reduce particle size-does not occur in venusian atmosphere conditions.) We propose for the first time that the only way life can survive indefinitely is with a life cycle that involves microbial life drying out as liquid droplets evaporate during settling, with the small desiccated "spores" halting at, and partially populating, the venusian atmosphere stagnant lower haze layer (33-48 km altitude). We, thus, call the venusian lower haze layer a "depot" for desiccated microbial life. The spores eventually return to the cloud layer by upward diffusion caused by mixing induced by gravity waves, act as cloud condensation nuclei, and rehydrate for a continued life cycle. We also review the challenges for life in the extremely harsh conditions of the venusian atmosphere, refuting the notion that the "habitable" cloud layer has an analogy in any terrestrial environment.


Subject(s)
Atmosphere , Extraterrestrial Environment , Animals , Climate , Life Cycle Stages , Particle Size
17.
Phys Chem Chem Phys ; 21(35): 18970-18987, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31463504

ABSTRACT

Unambiguously identifying molecules in spectra is of fundamental importance for a variety of scientific and industrial uses. Interpreting atmospheric spectra for the remote detection of volatile compounds requires information about the spectrum of each relevant molecule. However, spectral data currently exist for a few hundred molecules and only a fraction of those have complete spectra (e.g. H2O, NH3). Consequently, molecular detections in atmospheric spectra remain vulnerable to false positives, false negatives, and missassignments. There is a key need for spectral data for a broad range of molecules. Given how challenging it is to obtain high-resolution molecular spectra, there is great value in creating intermediate approximate spectra that can provide a starting point for the analysis of atmospheric spectra. Using a combination of experimental measurements, organic chemistry, and quantum mechanics, RASCALL (Rapid Approximate Spectral Calculations for ALL) is a computational approach that provides approximate spectral data for any given molecule, including thousands of potential atmospheric gases. RASCALL is a new theoretical chemistry method for the simulation of spectral data. RASCALL 1.0, presented here, is capable of simulating molecular spectral data, in a few seconds, by interpreting functional group data from experimental and theoretical sources to estimate the position and strength of molecular bands. The RASCALL 1.0 spectra consist of approximate band centers and qualitative intensities. RASCALL 1.0 is also able to assess hundreds of molecules simultaneously, which will inform prioritization protocols for future, computationally and experimentally costly, high-accuracy physical chemistry studies. Finally, RASCALL can be used to study spectral patterns between molecules, highlighting ambiguities in molecular detections and also directing observations towards spectral regions that reduce the degeneracy in molecular identification. The RASCALL catalogue, and its preliminary version RASCALL 1.0, contains spectral data for more molecules than any other publicly available database, with applications in all fields interested in the detection of molecules in the gas phase (e.g., medical imaging, petroleum industry, pollution monitoring, astrochemistry). The preliminary catalogue of molecular data and associated documentation are freely available online and will be routinely updated.

18.
Molecules ; 24(5)2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30823503

ABSTRACT

Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.


Subject(s)
Amides/chemistry , Biological Products/chemistry , Organophosphonates/chemistry , Organophosphorus Compounds/chemistry , Phosphates/chemistry , Phosphoric Acids/chemistry
19.
Astrobiology ; 19(4): 579-613, 2019 04.
Article in English | MEDLINE | ID: mdl-30431334

ABSTRACT

A fundamental goal of biology is to understand the rules behind life's use of chemical space. Established work focuses on why life uses the chemistry that it does. Given the enormous scope of possible chemical space, we postulate that it is equally important to ask why life largely avoids certain areas of chemical space. The nitrogen-sulfur bond is a prime example, as it rarely appears in natural molecules, despite the very rich N-S bond chemistry applied in various branches of industry (e.g., industrial materials, agrochemicals, pharmaceuticals). We find that, out of more than 200,000 known, unique compounds made by life, only about 100 contain N-S bonds. Furthermore, the limited number of N-S bond-containing molecules that life produces appears to fall into a few very distinctive structural groups. One may think that industrial processes are unrelated to biochemistry because of a greater possibility of solvents, catalysts, and temperatures available to industry than to the cellular environment. However, the fact that life does rarely make N-S bonds, from the plentiful precursors available, and has evolved the ability to do so independently several times, suggests that the restriction on life's use of N-S chemistry is not in its synthesis. We present a hypothesis to explain life's extremely limited usage of the N-S bond: that the N-S bond chemistry is incompatible with essential segments of biochemistry, specifically with thiols. We support our hypothesis by (1) a quantitative analysis of the occurrence of N-S bond-containing natural products and (2) reactivity experiments between selected N-S compounds and key biological molecules. This work provides an example of a reason why life nearly excludes a distinct region of chemical space. Combined with future examples, this potentially new field of research may provide fresh insight into life's evolution through chemical space and its origin and early evolution.


Subject(s)
Biochemical Phenomena , Nitrogen/chemistry , Origin of Life , Sulfhydryl Compounds/chemistry , Sulfur/chemistry , Biological Products/chemistry , Magnetic Resonance Spectroscopy , Time Factors
20.
Sci Total Environ ; 658: 521-536, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30579209

ABSTRACT

We present a new model for the biological production of phosphine (PH3). Phosphine is found globally, in trace amounts, in the Earth's atmosphere. It has been suggested as a key molecule in the phosphorus cycle, linking atmospheric, lithospheric and biological phosphorus chemistry. Phosphine's production is strongly associated with marshes, swamps and other sites of anaerobic biology. However the mechanism of phosphine's biological production has remained controversial, because it has been believed that reduction of phosphate to phosphine is endergonic. In this paper we show through thermodynamic calculations that, in specific environments, the combined action of phosphate reducing and phosphite disproportionating bacteria can produce phosphine. Phosphate-reducing bacteria can capture energy from the reduction of phosphate to phosphite through coupling phosphate reduction to NADH oxidation. Our hypothesis describes how the phosphate chemistry in an environmental niche is coupled to phosphite generation in ground water, which in turn is coupled to the phosphine production in water and atmosphere, driven by a specific microbial ecology. Our hypothesis provides clear predictions on specific complex environments where biological phosphine production could be widespread. We propose tests of our hypothesis in fieldwork.


Subject(s)
Bacteria/metabolism , Environment , Phosphines/metabolism , Models, Chemical , Oxidation-Reduction , Phosphines/analysis , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...