Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2402833, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837820

ABSTRACT

Leveraging breakthroughs in Y-series nonfullerene acceptors (NFAs), organic solar cells (OSCs) have achieved impressive power conversion efficiencies (PCEs) exceeding 19%. However, progress in advancing OSCs has decelerated due to constraints in realizing the full potential of the Y-series NFAs. Herein, a simple yet effective solid additive-induced preaggregation control method employing 2-chloro-5-iodopyridine (PDCI) is reported to unlock the full potential of the Y-series NFAs. Specifically, PDCI interacts predominantly with Y-series NFAs enabling enhanced and ordered phase-aggregation in solution. This method leads to a notable improvement and a redshifted absorption of the acceptor phase during film formation, along with improved crystallinity. Moreover, the PDCI-induced preaggregation of NFAs in the solution enables ordered molecule packing during the film-formation process through delicate intermediate states transition. Consequently, the PDCI-induced preaggregated significantly improves the PCE of PM6:Y6 OSCs from 16.12% to 18.12%, among the best values reported for PM6:Y6 OSCs. Importantly, this approach is universally applicable to other Y-series NFA-based OSCs, achieving a champion PCE of 19.02% for the PM6:BTP-eC9 system. Thus, the preaggregation control strategy further unlocks the potential of Y-series NFAs, offering a promising avenue for enhancing the photovoltaic performance of Y-series NFA-based OSCs.

2.
Nat Commun ; 14(1): 5481, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37673950

ABSTRACT

Conjugated polymer films, which can conduct both ionic and electronic charges, are central to building soft electronic sensors and actuators. Despite the possible interplay between light absorption and the mixed conductivity of these materials in aqueous biological media, no single polymer film has been utilized to create a solar-switchable organic bioelectronic circuit that relies on a fully reversible and redox reaction-free potentiometric photodetection and current modulation. Here we demonstrate that the absorption of light by an electron and cation-transporting polymer film reversibly modulates its electrochemical potential and conductivity in an aqueous electrolyte, which is harnessed to design an n-type photo-electrochemical transistor (n-OPECT). By controlling the intensity of light incident on the n-type polymeric gate electrode, we generate transistor output characteristics that mimic the modulation of the polymeric channel current achieved through gate voltage control. The micron-scale n-OPECT exhibits a high signal-to-noise ratio and an excellent sensitivity to low light intensities. We demonstrate three direct applications of the n-OPECT, i.e., a photoplethysmogram recorder, a light-controlled inverter circuit, and a light-gated artificial synapse, underscoring the suitability of this platform for a myriad of biomedical applications that involve light intensity changes.

3.
iScience ; 25(7): 104615, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35800756

ABSTRACT

Terahertz emission from ferromagnetic/non-magnetic spintronic heterostructures had been demonstrated as pump wavelength-independent. We report, however, the pump wavelength dependence of terahertz emission from an optimized Fe/Pt spintronic bilayer on MgO substrate. Maximum terahertz generation per total pump power was observed in the 1200- to 1800-nm pump wavelength range, and a marked decrease in the terahertz emission efficiency beyond 2500 nm (pump photon energies <0.5 eV) suggests a ∼0.35-eV threshold pump photon energy for effective spintronic terahertz emission. The inferred threshold is supported by previous theoretical results on the onset energy of significant spin-filtering at the Fe-Pt interface, and confirmed by Fe/Pt electronic structure calculations in this present work. The results of terahertz time-domain emission spectroscopy show the sensitivity of spintronic terahertz emission to both the optical absorptance of the heterostructure and the energy-dependent spin transport, as dictated by the properties of the metallic thin films.

4.
ACS Nano ; 16(3): 3861-3869, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35262327

ABSTRACT

Type-II heterostructures (HSs) are essential components of modern electronic and optoelectronic devices. Earlier studies have found that in type-II transition metal dichalcogenide (TMD) HSs, the dominating carrier relaxation pathway is the interlayer charge transfer (CT) mechanism. Here, this report shows that, in a type-II HS formed between monolayers of MoSe2 and ReS2, nonradiative energy transfer (ET) from higher to lower work function material (ReS2 to MoSe2) dominates over the traditional CT process with and without a charge-blocking interlayer. Without a charge-blocking interlayer, the HS area shows 3.6 times MoSe2 photoluminescence (PL) enhancement as compared to the MoSe2 area alone. In a completely encapsulated sample, the HS PL emission further increases by a factor of 6.4. After completely blocking the CT process, more than 1 order of magnitude higher MoSe2 PL emission was achieved from the HS area. This work reveals that the nature of this ET is truly a resonant effect by showing that in a similar type-II HS formed by ReS2 and WSe2, CT dominates over ET, resulting in a severely quenched WSe2 PL. This study not only provides significant insight into the competing interlayer processes but also shows an innovative way to increase the PL emission intensity of the desired TMD material using the ET process by carefully choosing the right material combination for HS.

5.
Energy Environ Sci ; 14(12): 6320-6328, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-35003331

ABSTRACT

With rapidly growing photoconversion efficiencies, hybrid perovskite solar cells have emerged as promising contenders for next generation, low-cost photovoltaic technologies. Yet, the presence of nanoscale defect clusters, that form during the fabrication process, remains critical to overall device operation, including efficiency and long-term stability. To successfully deploy hybrid perovskites, we must understand the nature of the different types of defects, assess their potentially varied roles in device performance, and understand how they respond to passivation strategies. Here, by correlating photoemission and synchrotron-based scanning probe X-ray microscopies, we unveil three different types of defect clusters in state-of-the-art triple cation mixed halide perovskite thin films. Incorporating ultrafast time-resolution into our photoemission measurements, we show that defect clusters originating at grain boundaries are the most detrimental for photocarrier trapping, while lead iodide defect clusters are relatively benign. Hexagonal polytype defect clusters are only mildly detrimental individually, but can have a significant impact overall if abundant in occurrence. We also show that passivating defects with oxygen in the presence of light, a previously used approach to improve efficiency, has a varied impact on the different types of defects. Even with just mild oxygen treatment, the grain boundary defects are completely healed, while the lead iodide defects begin to show signs of chemical alteration. Our findings highlight the need for multi-pronged strategies tailored to selectively address the detrimental impact of the different defect types in hybrid perovskite solar cells.

6.
Polymers (Basel) ; 12(9)2020 Sep 19.
Article in English | MEDLINE | ID: mdl-32961735

ABSTRACT

Strong plasmon-exciton coupling between tightly-bound excitons in organic molecular semiconductors and surface plasmons in metal nanostructures has been studied extensively for a number of technical applications, including low-threshold lasing and room-temperature Bose-Einstein condensates. Typically, excitons with narrow resonances, such as J-aggregates, are employed to achieve strong plasmon-exciton coupling. However, J-aggregates have limited applications for optoelectronic devices compared with organic conjugated polymers. Here, using numerical and analytical calculations, we demonstrate that strong plasmon-exciton coupling can be achieved for Ag-conjugated polymer core-shell nanostructures, despite the broad spectral linewidth of conjugated polymers. We show that strong plasmon-exciton coupling can be achieved through the use of thick shells, large oscillator strengths, and multiple vibronic resonances characteristic of typical conjugated polymers, and that Rabi splitting energies of over 1000 meV can be obtained using realistic material dispersive relative permittivity parameters. The results presented herein give insight into the mechanisms of plasmon-exciton coupling when broadband excitonic materials featuring strong vibrational-electronic coupling are employed and are relevant to organic optoelectronic devices and hybrid metal-organic photonic nanostructures.

7.
Nature ; 580(7803): 360-366, 2020 04.
Article in English | MEDLINE | ID: mdl-32296189

ABSTRACT

Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices1,2. This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively3) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects4. Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance5, perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombine non-radiatively. These deep trap states thus induce local variations in photoluminescence and limit the device performance6. The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions7 and with local strain8, both of which make devices less stable9. Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process10,11, we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices.

8.
Adv Mater ; 29(4)2017 Jan.
Article in English | MEDLINE | ID: mdl-27869345

ABSTRACT

Integration of organic/inorganic hybrid perovskites with metallic or semiconducting phases of 2D MoS2 nanosheets via solution processing is demonstrated. The results show that the collection of charge carriers is strongly dependent on the electronic properties of the 2D MoS2 with metallic MoS2 showing high responsivity and the semiconducting phase exhibiting high on/off ratios.

9.
ACS Nano ; 10(11): 9899-9908, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27934091

ABSTRACT

Hybrid organic-inorganic heterostructures are attracting tremendous attention for optoelectronic applications due to their low-cost processing and high performance in devices. In particular, van der Waals p-n heterojunctions formed between inorganic two-dimensional (2D) materials and organic semiconductors are of interest due to the quantum confinement effects of 2D materials and the synthetic control of the physical properties of organic semiconductors, enabling a high degree of tunable optoelectronic properties for the heterostructure. However, for photovoltaic applications, hybrid 2D-organic heterojunctions have demonstrated low power conversion efficiencies due to the limited absorption from constraints on the physical thickness of each layer. Here, we investigate the ultrafast charge transfer dynamics between an organic polymer:fullerene blend and 2D n-type MoS2 using transient pump-probe reflectometry. We employ plasmonic metasurfaces to enhance the absorption and charge photogeneration within the physically thin hybrid MoS2-organic heterojunction. For the hybrid MoS2-organic heterojunction in the presence of the plasmonic metasurface, the charge generation within the polymer is enhanced 6-fold, and the total active layer absorption bandwidth is increased by 90 nm relative to the polymer:fullerene blend alone. We demonstrate that MoS2-organic heterojunctions can serve as hybrid solar cells, and their efficiencies can be improved using plasmonic metasurfaces.

10.
Sci Rep ; 6: 22620, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26936437

ABSTRACT

Van der Waals materials, existing in a range of thicknesses from monolayer to bulk, allow for interplay between surface and bulk nonlinearities, which otherwise dominate only at atomically-thin or bulk extremes, respectively. Here, we observe an unexpected peak in intensity of the generated second harmonic signal versus the thickness of Indium Selenide crystals, in contrast to the quadratic increase expected from thin crystals. We explain this by interference effects between surface and bulk nonlinearities, which offer a new handle on engineering the nonlinear optical response of 2D materials and their heterostructures.

11.
Nat Commun ; 6: 7899, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26271900

ABSTRACT

Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light-matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...