Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22281399

ABSTRACT

The global SARS-CoV-2 immune landscape and population protection against emerging variants is largely unknown. We assessed SARS-CoV-2 antibody changes in the Dominican Republic and implications for immunological protection against variants of concern. Between March 2021 and August 2022, 2,300 patients with undifferentiated febrile illnesses were prospectively enrolled. Sera was tested for total anti-spike antibodies and simultaneously collected nasopharyngeal samples for acute SARS-CoV-2 infection with RT-PCR. Geometric mean anti-spike titers increased from 6.6 BAU/ml (95% CI 5.1-8.7) to 1,332 BAU/ml (1055-1,682). Multivariable binomial odds ratios for acute SARS-CoV-2 infection were 0.55 (0.40-0.74), 0.38 (0.27-0.55), and 0.27 (0.18-0.40) for the second, third, and fourth versus the first anti-S quartile, with similar findings by viral strain. Integrated serological and virological screening can leverage existing acute fever surveillance platforms to monitor population-level immunological markers and concurrently characterize implications for emergent variant transmission in near real-time.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20248998

ABSTRACT

BackgroundCOVID-19 has resulted in significant morbidity and mortality worldwide. Lateral flow assays can detect anti-Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) antibodies to monitor transmission. However, standardized evaluation of their accuracy and tools to aid in interpreting results are needed. MethodsWe evaluated 20 IgG and IgM assays selected from available tests in April 2020. We evaluated the assays performance using 56 pre-pandemic negative and 56 SARS-CoV-2-positive plasma samples, collected 10-40 days after symptom onset, confirmed by a molecular test and analyzed by an ultra-sensitive immunoassay. Finally, we developed a user-friendly web app to extrapolate the positive predictive values based on their accuracy and local prevalence. ResultsCombined IgG+IgM sensitivities ranged from 33.9% to 94.6%, while combined specificities ranged from 92.6% to 100%. The highest sensitivities were detected in Lumiquick for IgG (98.2%), BioHit for both IgM (96.4%), and combined IgG+IgM sensitivity (94.6%). Furthermore, 11 LFAs and 8 LFAs showed perfect specificity for IgG and IgM, respectively, with 15 LFAs showing perfect combined IgG+IgM specificity. Lumiquick had the lowest estimated limit-of-detection (LOD) (0.1 g/mL), followed by a similar LOD of 1.5 g/mL for CareHealth, Cellex, KHB, and Vivachek. ConclusionWe provide a public resource of the accuracy of select lateral flow assays with potential for home testing. The cost-effectiveness, scalable manufacturing process, and suitability for self-testing makes LFAs an attractive option for monitoring disease prevalence and assessing vaccine responsiveness. Our web tool provides an easy-to-use interface to demonstrate the impact of prevalence and test accuracy on the positive predictive values.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20139006

ABSTRACT

BackgroundSeroepidemiology is an important tool to characterize the epidemiology and immunobiology of SARS-CoV-2 but many immunoassays have not been externally validated raising questions about reliability of study findings. To ensure meaningful data, particularly in a low seroprevalence population, assays need to be rigorously characterized with high specificity. MethodsWe evaluated two commercial (Roche Diagnostics and Epitope Diagnostics IgM/IgG) and two non-commercial (Simoa and Ragon/MGH IgG) immunoassays against 68 confirmed positive and 232 pre-pandemic negative controls. Sensitivity was stratified by time from symptom onset. The Simoa multiplex assay applied three pre-defined algorithm models to determine sample result. ResultsThe Roche and Ragon/MGH IgG assays each registered 1/232 false positive, the primary Simoa model registered 2/232 false positives, and the Epitope registered 2/230 and 3/230 false positives for the IgG and IgM assays respectively. Sensitivity >21 days post symptom-onset was 100% for all assays except Epitope IgM, but lower and/or with greater variability between assays for samples collected 9-14 days (67-100%) and 15-21 days (69-100%) post-symptom onset. The Simoa and Epitope IgG assays demonstrated excellent sensitivity earlier in the disease course. The Roche and Ragon/MGH assays were less sensitive during early disease, particularly among immunosuppressed individuals. ConclusionsThe Epitope IgG demonstrated good sensitivity and specificity. The Roche and Ragon/MGH IgG assays registered rare false positives with lower early sensitivity. The Simoa assay primary model had excellent sensitivity and few false positives. SummarySARS-CoV-2 immunoassays can be valuable tools for informing the global response, but many currently available assays have not been independently validated. We conducted a performance assessment of four assays including the Roche Diagnostics and Epitope Diagnostics immunoassays.

4.
Cell Rep ; 15(6): 1202-13, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27134176

ABSTRACT

Active-targeted delivery to lymph nodes represents a major advance toward more effective treatment of immune-mediated disease. The MECA79 antibody recognizes peripheral node addressin molecules expressed by high endothelial venules of lymph nodes. By mimicking lymphocyte trafficking to the lymph nodes, we have engineered MECA79-coated microparticles containing an immunosuppressive medication, tacrolimus. Following intravenous administration, MECA79-bearing particles showed marked accumulation in the draining lymph nodes of transplanted animals. Using an allograft heart transplant model, we show that targeted lymph node delivery of microparticles containing tacrolimus can prolong heart allograft survival with negligible changes in tacrolimus serum level. Using MECA79 conjugation, we have demonstrated targeted delivery of tacrolimus to the lymph nodes following systemic administration, with the capacity for immune modulation in vivo.


Subject(s)
Drug Delivery Systems , Immunologic Factors/pharmacology , Lymph Nodes/metabolism , Animals , Antibodies/pharmacology , Antigens, Surface/metabolism , Cell Proliferation/drug effects , Cytokines/metabolism , Disease Models, Animal , Graft Survival/drug effects , Heart Transplantation , Immunosuppressive Agents/pharmacology , Lymph Nodes/drug effects , Membrane Proteins/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Microspheres , Neoplasm Transplantation , Polyesters/chemistry , Tacrolimus/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...