Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38668194

ABSTRACT

A complex study of the adhesion of multi-walled carbon nanotubes to a titanium surface, depending on the modes of irradiation with He+ ions of the "MWCNT/Ti" system, was conducted using atomic force microscopy and X-ray photoelectron spectroscopy. A quantitative assessment of the adhesion force at the interface, performed using atomic force microscopy, demonstrated its significant increase as a result of treatment of the "MWCNT/Ti" system with a beam of helium ions. The nature of the chemical bonding between multi-walled carbon nanotubes and the surface of the titanium substrate, which causes this increase in the adhesion of nanotubes to titanium as a result of ion irradiation, was investigated by X-ray photoelectron spectroscopy. It was established that this bonding is the result of the formation of chemical C-O-Ti bonds between titanium and carbon atoms with the participation of oxygen atoms of oxygen-containing functional groups, which are localized on defects in the nanotube walls formed during ion irradiation. It is significant that there are no signs of direct bonding between titanium and carbon atoms.

2.
J Environ Sci (China) ; 140: 24-36, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38331504

ABSTRACT

The work is devoted to the study of combustion of brown coal, pine sawdust, and their mixtures in a fluidized bed of catalyst at 600-750°Ð¡. It is shown that an increase in the content of sawdust in a mixture with brown coal leads to an increase in the burnout degree of solid fuel from 94.4% to 99.9%, while the emission of greenhouse gases in the form of CO2 CO and NOx is reduced (CO2 from the biomass is not included in the balance). The high content of alkaline earth metal oxides (CaO and MgO) in the mineral part of brown coal, sawdust, and their mixtures eliminates the emission of sulfur oxides and the slagging of heat-exchange surfaces during the combustion in a fluidized bed of catalyst. The optimal temperature, when the highest burnout degree of the above fuels is achieved in the combustion is 750°Ð¡. It is also shown that the increase in temperature and the content of sawdust in the composition of the fuel mixtures has a positive effect on the economic and environmental process indicators.


Subject(s)
Carbon Dioxide , Coal , Biomass , Oxides , Sulfur Oxides
3.
Biochemistry (Mosc) ; 88(11): 1920-1932, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38105209

ABSTRACT

Progesterone exerts multiple effects in different tissues through nuclear receptors (nPRs) and through membrane receptors (mPRs) of adiponectin and progestin receptor families. The effect of progesterone on the cells through different types of receptors can vary significantly. At the same time, it affects the processes of proliferation and apoptosis in normal and tumor tissues in a dual way, stimulating proliferation and carcinogenesis in some tissues, suppressing them and stimulating cell death in others. In this study, we have shown the presence of high level of mPRß mRNA and protein in the HepG2 cells of human hepatocellular carcinoma. Expression of other membrane and classical nuclear receptors was not detected. It could imply that mPRß has an important function in the HepG2 cells. The main goal of the work was to study functions of this protein and mechanisms of its action in human hepatocellular carcinoma cells. Previously, we have identified selective mPRs ligands, compounds LS-01 and LS-02, which do not interact with nuclear receptors. Their employment allows differentiating the effects of progestins mediated by different types of receptors. Effects of progesterone, LS-01, and LS-02 on proliferation and death of HepG2 cells were studied in this work, as well as activating phosphorylation of two kinases, p38 MAPK and JNK, under the action of three steroids. It was shown that all three progestins after 72 h of incubation with the cells suppressed their viability and stimulated appearance of phosphatidylserine on the outer surface of the membranes, which was detected by binding of annexin V, but they did not affect DNA fragmentation of the cell nuclei. Progesterone significantly reduced expression of the proliferation marker genes and stimulated expression of the p21 protein gene, but had a suppressive effect on the expression of some proapoptotic factor genes. All three steroids activated JNK in these cells, but had no effect on the p38 MAPK activity. The effects of progesterone and selective mPRs ligands in HepG2 cells were the same in terms of suppression of proliferation and stimulation of apoptotic changes in outer membranes, therefore, they were mediated through interaction with mPRß. JNK is a member of the signaling cascade activated in these cells by the studied steroids.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Progesterone/pharmacology , Progesterone/metabolism , Receptors, Progesterone/genetics , Progestins/pharmacology , Hep G2 Cells , Ligands , p38 Mitogen-Activated Protein Kinases
4.
Curr Issues Mol Biol ; 45(10): 8289-8308, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37886966

ABSTRACT

The hypothalamus is an important regulator of autonomic and endocrine functions also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular signaling including insulin/insulin-like growth factor-1 (IGF-1)/growth hormone (GH), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/the mammalian target of rapamycin (mTOR), mitogen activated protein kinase (MAPK), janus kinase (JAK)/signal transducer and activator of transcription (STAT), AMP-activated protein kinase (AMPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), and nitric oxide (NO). In the current review, I have summarized the current understanding of the changes in the above-mentioned pathways in aging with a focus on hypothalamic alterations.

5.
Microrna ; 12(3): 227-232, 2023.
Article in English | MEDLINE | ID: mdl-37565555

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) belong to small non-coding RNAs that coordinate the expression of cellular genes at the post-transcriptional level. The hypothalamus is a key regulator of homeostasis, biological rhythms and adaptation to different environmental factors. It also participates in the aging regulation. Variations in miRNA expression in the hypothalamus can affect the aging process. OBJECTIVE: Our objective of this study is to examine the expression of miR-200a-3p, miR-200b-3p, miR-200c-3p in the dorsomedial (DMN), ventromedial (VMN) and arcuate (ARN) nuclei of the hypothalamus in male and female rats during aging. METHODS: The expression of miR-200a-3p, miR-200b-3p, and miR-200c-3p in DMN, VMN and ARN was studied by qPCR-RT. The results were presented using the 2-ΔΔCq algorithm. RESULTS: The expression of miR-200a-3p, miR-200b-3p, miR-200c-3p microRNAs decreases with aging in the DMN of males and in the VMN of females. The level of miR-200b-3p expression decreased in aged males in the VMN and females in the DMN. The expression of miR-200c-3p declined in aged males in the ARN and in females in the DMN. The expression of miR-200a-3p, miR-200b-3p, and miR-200c-3p did not change in females in the ARN in aging. CONCLUSION: We found a decrease in the expression of members of the miR-200a-3p, miR-200b-3p, and miR-200c-3p in the tuberal hypothalamic nuclei and their sex differences in aging rats.


Subject(s)
Aging , Hypothalamus , MicroRNAs , Animals , Female , Male , Rats , MicroRNAs/genetics
6.
J Phys Chem B ; 127(28): 6432-6439, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37428962

ABSTRACT

Herein, we present an efficient approach for screening the intrinsic photostability of organic absorber materials used in photovoltaic applications. Using a series of structurally related conjugated polymers and a set of complementary techniques, we established important "material structure-photostability" relationships. In particular, we have revealed that the introduction of alkoxy, thioalkyl, and fluorine substituents adversely affects the material photostability. Further systematic screening of different types of materials using the developed techniques should yield a set of guidelines for designing more stable absorber materials for organic solar cells.

7.
Int J Mol Sci ; 24(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37373016

ABSTRACT

A comparative study of the electronic structure of the salen ligand in the H2(Salen) molecule and the [Ni(Salen)] complex was performed using the experimental methods of XPS, UV PES, and NEXAFS spectroscopy along with DFT calculations. Significant chemical shifts of +1.0 eV (carbon), +1.9 eV (nitrogen), and -0.4 eV (oxygen) were observed in the 1s PE spectra of the salen ligand atoms when passing from a molecule to a complex, unambiguously indicating a substantial redistribution of the valence electron density between these atoms. It is proposed that the electron density transfer to the O atoms in [Ni(Salen)] occurred not only from the Ni atom, but also from the N and C atoms. This process seemed to be realized through the delocalized conjugated π-system of the phenol C 2p electronic states of the ligand molecule. The DFT calculations (total and partial DOS) for the valence band H2(Salen) and [Ni(Salen)] described well the spectral shape of the UV PE spectra of both compounds and confirmed their experimental identification. An analysis of the N and O 1s NEXAFS spectra clearly indicated that the atomic structure of the ethylenediamine and phenol fragments was retained upon passing from the free salen ligand to the nickel complex.


Subject(s)
Ethylenediamines , Nickel , Ligands , Ethylenediamines/chemistry , Electron Transport , Nickel/chemistry
8.
Ecol Evol ; 13(6): e10185, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37293123

ABSTRACT

High latitude ecosystems are experiencing the most rapid warming on earth, expected to trigger a diverse array of ecological responses. Climate warming affects the ecophysiology of fish, and fish close to the cold end of their thermal distribution are expected to increase somatic growth from increased temperatures and a prolonged growth season, which in turn affects maturation schedules, reproduction, and survival, boosting population growth. Accordingly, fish species living in ecosystems close to their northern range edge should increase in relative abundance and importance, and possibly displace cold-water adapted species. We aim to document whether and how population-level effects of warming are mediated by individual-level responses to increased temperatures, shift community structure, and composition in high latitude ecosystems. We studied 11 cool-water adapted perch populations in communities dominated by cold-water adapted species (whitefish, burbot, and charr) to investigate changes in the relative importance of the cool-water perch during the last 30 years of rapid warming in high latitude lakes. In addition, we studied the individual-level responses to warming to clarify the potential mechanisms underlying the population effects. Our long-term series (1991-2020) reveal a marked increase in numerical importance of the cool-water fish species, perch, in ten out of eleven populations, and in most fish communities perch is now dominant. Moreover, we show that climate warming affects population-level processes via direct and indirect temperature effects on individuals. Specifically, the increase in abundance arises from increased recruitment, faster juvenile growth, and ensuing earlier maturation, all boosted by climate warming. The speed and magnitude of the response to warming in these high latitude fish communities strongly suggest that cold-water fish will be displaced by fish adapted to warmer water. Consequently, management should focus on climate adaptation limiting future introductions and invasions of cool-water fish and mitigating harvesting pressure on cold-water fish.

9.
Antioxidants (Basel) ; 12(4)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37107349

ABSTRACT

Hepatitis delta virus (HDV) is a viroid-like satellite that may co-infect individuals together with hepatitis B virus (HBV), as well as cause superinfection by infecting patients with chronic hepatitis B (CHB). Being a defective virus, HDV requires HBV structural proteins for virion production. Although the virus encodes just two forms of its single antigen, it enhances the progression of liver disease to cirrhosis in CHB patients and increases the incidence of hepatocellular carcinoma. HDV pathogenesis so far has been attributed to virus-induced humoral and cellular immune responses, while other factors have been neglected. Here, we evaluated the impact of the virus on the redox status of hepatocytes, as oxidative stress is believed to contribute to the pathogenesis of various viruses, including HBV and hepatitis C virus (HCV). We show that the overexpression of large HDV antigen (L-HDAg) or autonomous replication of the viral genome in cells leads to increased production of reactive oxygen species (ROS). It also leads to the upregulated expression of NADPH oxidases 1 and 4, cytochrome P450 2E1, and ER oxidoreductin 1α, which have previously been shown to mediate oxidative stress induced by HCV. Both HDV antigens also activated the Nrf2/ARE pathway, which controls the expression of a spectrum of antioxidant enzymes. Finally, HDV and its large antigen also induced endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR). In conclusion, HDV may enhance oxidative and ER stress induced by HBV, thus aggravating HBV-associated pathologies, including inflammation, liver fibrosis, and the development of cirrhosis and hepatocellular carcinoma.

10.
Molecules ; 28(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36771083

ABSTRACT

When creating titanium-containing bone implants, the bioactive coatings that promote their rapid engraftment are important. The engraftment rate of titanium implants with bone tissue depends significantly on the modification of the implant surface. It is achieved by changing either the relief or the chemical composition of the surface layer, as well as a combination of these two factors. In this work, we studied the creation of composite coatings with a two-level (the micro- and nanolevel) hierarchy of the surface relief, which have bioactive and bactericidal properties, which are promising for bone implantation. Using the developed non-lithographic template electrochemical synthesis, a composite coating on titanium with a controlled surface structure was created based on an island-type TiO2 film, silver and hydroxyapatite (HAp). This TiO2/Ag/HAp composite coating has a developed surface relief at the micro- and nanolevels and has a significant cytological response and the ability to accelerate osteosynthesis, and also has an antibacterial effect. Thus, the developed biomaterial is suitable for production of dental and orthopedic implants with improved biomedical properties.


Subject(s)
Coated Materials, Biocompatible , Titanium , Titanium/pharmacology , Titanium/chemistry , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Bone and Bones , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Durapatite/pharmacology , Durapatite/chemistry , Surface Properties
11.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674808

ABSTRACT

Nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) are widely used for drug delivery. One of the main challenges is to clarify their interaction with hypoxia-inducible factor 1 alpha (HIF-1α), the lack of which leads to oncological and cardiovascular diseases. In the presented study, N-MWCNTs were synthesized by catalytic chemical vapor deposition and irradiated with argon ions. Their chemical state, local structure, interfaces, Stone-Wales defects, and doping with nitrogen were analyzed by high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Using experimental data, supercells of functionalized N-MWCNTs with an oxygen content of 2.7, 4 and 6 at. % in carboxyl groups were built by quantum chemical methods. Our analysis by the self-consistent charge density functional tight-binding (SCC DFTB) method shows that a key role in the functionalization of CNTs with carboxyl groups belongs to Stone-Wales defects. The results of research in the decoration of CNTs with HIF-1α demonstrate the possibility of wave-diffusion drug delivery. The nature of hybridization and relaxation determines the mechanism of oxygen regulation with HIF-1α molecules, namely, by OH-(OH-C) and OH-(O=C) chemical bonds. The concentration dependence of drug release in the diffusion mode suggests that the best pattern for drug delivery is provided by the tube with a carboxylic oxygen content of 6 at. %.


Subject(s)
Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Microscopy, Electron, Transmission , Nitrogen , Oxygen
12.
Anat Rec (Hoboken) ; 306(9): 2276-2291, 2023 09.
Article in English | MEDLINE | ID: mdl-35500072

ABSTRACT

Neurons, expressing neuronal nitric oxide synthase (nNOS) in the enteric ganglia are inhibitory motor neurons or interneurons. The aim of the study was to identify the percentage, cross-sectional area of nNOS-immunoreactive (IR) neurons and their colocalization with choline acetyltransferase (ChAT), vasoactive intestinal polypeptide (VIP), and neuropeptide Y in the intramural ganglia of the myenteric (MP) and submucous plexus (SP) of the small intestine (SI) and large intestine (LI) of rats of different age groups using immunohistochemical methods. In the intramural ganglia of the MP, the largest percentage of nNOS-IR neurons was detected in newborn rats in the LI (81 ± 0.9%) and SI (48 ± 4.1%). Subsequently, it decreased in ontogenesis up to 60 days of life (26 ± 0.9% LI, 29 ± 3.2% SI), and did not change until senescence. In the SP, abundant nNOS-IR neurons were also detected in newborns (82 ± 7.0% SI, 85 ± 3.2% LI), while their percentage decreased significantly in the next 20 days. Furthermore, a very small number of nNOS-IR neurons was detected in 30-day- and 2-month-old animals, but they again appeared in large numbers in aged rats. In the MP, the highest percentage of nNOS+/ChAT+ neurons was in 1-day-old, 10-day-old, and 2-year-old rats. In the SP, the largest number of nNOS-IR neurons colocalized ChAT regardless of age. In the MP of all rats, many nNOS-IR neurons colocalized VIP, and the maximal percentage of nNOS+/VIP+ neurons was found in 2-year-old rats, minimal-in newborns. In conclusion, nNOS expression in neurons of the gut is decreased in early postnatal ontogenesis and subsequently increased in aged rats.


Subject(s)
Neurons , Vasoactive Intestinal Peptide , Animals , Rats , Nitric Oxide Synthase Type I/metabolism , Neurons/metabolism , Vasoactive Intestinal Peptide/metabolism , Myenteric Plexus/metabolism , Intestine, Small/metabolism
13.
Anat Rec (Hoboken) ; 306(9): 2249-2263, 2023 09.
Article in English | MEDLINE | ID: mdl-35762574

ABSTRACT

The sympathetic nervous system inhibits gut motility, secretion, and blood flow in the gut microvasculature and can modulate gastrointestinal inflammation. Sympathetic neurons signal via catecholamines, neuropeptides, and gas mediators. In the current review, we summarize the current understanding of the mature sympathetic innervation of the gastrointestinal tract with a focus mainly on the prevertebral sympathetic ganglia as the main output to the gut. We also highlight recent work regarding the developmental processes of sympathetic innervation. The anatomy, neurochemistry, and connections of the sympathetic prevertebral ganglia with different parts of the gut are considered in adult organisms during prenatal and postnatal development and aging. The processes and mechanisms that control the development of sympathetic neurons, including their migratory pathways, neuronal differentiation, and aging, are reviewed.


Subject(s)
Gastrointestinal Tract , Sympathetic Nervous System , Sympathetic Nervous System/physiology , Ganglia, Sympathetic , Neurons/metabolism
14.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36499699

ABSTRACT

Pathogenic variants in the SLC26A4, FOXI1, and KCNJ10 genes are associated with hearing loss (HL) and specific inner ear abnormalities (DFNB4). In the present study, phenotype analyses, including clinical data collection, computed tomography (CT), and audiometric examination, were performed on deaf individuals from the Sakha Republic of Russia (Eastern Siberia). In cases with cochleovestibular malformations, molecular genetic analysis of the coding regions of the SLC26A4, FOXI1, and KCNJ10 genes associated with DFNB4 was completed. In six of the 165 patients (3.6%), CT scans revealed an incomplete partition of the cochlea (IP-1 and IP-2), in isolation or combined with an enlarged vestibular aqueduct (EVA) anomaly. Sequencing of the SLC26A4, FOXI1, and KCNJ10 genes was performed in these six patients. In the SLC26A4 gene, we identified four variants, namely c.85G>C p.(Glu29Gln), c.757A>G p.(Ile253Val), c.2027T>A p.(Leu676Gln), and c.2089+1G>A (IVS18+1G>A), which are known as pathogenic, as well as c.441G>A p.(Met147Ile), reported previously as a variant with uncertain significance. Using the AlphaFold algorithm, we found in silico evidence of the pathogenicity of this variant. We did not find any causative variants in the FOXI1 and KCNJ10 genes, nor did we find any evidence of digenic inheritance associated with double heterozygosity for these genes with monoallelic SLC26A4 variants. The contribution of biallelic SLC26A4 variants in patients with IP-1, IP-2, IP-2+EVA, and isolated EVA was 66.7% (DFNB4 in three patients, Pendred syndrome in one patient). Seventy-five percent of SLC26A4-biallelic patients had severe or profound HL. The morphology of the inner ear anomalies demonstrated that, among SLC26A4-biallelic patients, all types of incomplete partition of the cochlea are possible, from IP-1 and IP-2, to a normal cochlea. However, the dominant type of anomaly was IP-2+EVA (50.0%). This finding is very important for cochlear implantation, since the IP-2 anomaly does not have an increased risk of "gushers" and recurrent meningitis.


Subject(s)
Hearing Loss, Sensorineural , Vestibular Aqueduct , Humans , Forkhead Transcription Factors/genetics , Hearing Loss, Sensorineural/diagnostic imaging , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Membrane Transport Proteins/genetics , Mutation , Sulfate Transporters/genetics , Vestibular Aqueduct/pathology
15.
Int J Mol Sci ; 23(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362250

ABSTRACT

The hypothalamus is a primary regulator of homeostasis, biological rhythms and adaptation to different environment factors. It also participates in the aging regulation. The expression of neurons containing Lin28 was studied by immunohistochemistry in male rats aged 2, 6, 12, and 24 months in the tuberal region of the rat hypothalamus. We have shown for the first time the presence of Lin28-immunoreactive (IR) neurons in the ventromedial nucleus (VMH) and their absence in the dorsomedial and arcuate nuclei in all studied animals. With aging, the percentage of Lin28-IR neurons increases from 37 ± 4.7 in 2-month-old rat until 76 ± 4.6 in 6-month-old and further decreases to 41 ± 7.3 in 12-month-old rat and 28 ± 5.5 in 24-month-old rats. Many VMH Lin28-IR neurons colocalized components of insulin signaling including mTOR, Raptor, PI3K and Akt. The percentage of Lin28/Akt-IR neurons was maximal in 6-month-old and 1-year-old rats compared to 2-month-old and 2-year-old animals. The proportion of Lin28/PI3K-IR neurons significantly increased from 77 ± 1.2 in 2-month-old rat until 99 ± 0.3 in 24-month-old rats and 96-99% of Lin28-IR neurons colocalized mTOR and mTORC1 component Raptor without statistically significant differences in all studied age groups. Thus, Lin28 expresses only in the VMH neurons of the tuberal nuclei of the hypothalamus and the Lin 28 expression changes during the development together with the components of PI3K-Akt-mTOR signaling.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , Male , Rats , Arcuate Nucleus of Hypothalamus/metabolism , Hypothalamus/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , RNA-Binding Proteins
16.
Int J Mol Sci ; 23(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35955956

ABSTRACT

One of the causes of diabetes in infants is the defect of the insulin gene (INS). Gene mutations can lead to proinsulin misfolding, an increased endoplasmic reticulum (ER) stress and possible beta-cell apoptosis. In humans, the mechanisms underlying beta-cell failure remain unclear. We generated induced pluripotent stem cells (iPSCs) from a patient diagnosed with neonatal diabetes mellitus carrying the INS mutation in the 2nd intron (c.188-31G>A) and engineered isogenic CRISPR/Cas9 mutation-corrected cell lines. Differentiation into beta-like cells demonstrated that mutation led to the emergence of an ectopic splice site within the INS and appearance of the abnormal RNA transcript. Isogenic iPSC lines differentiated into beta-like cells showed a clear difference in formation of organoids at pancreatic progenitor stage of differentiation. Moreover, MIN6 insulinoma cell line expressing mutated cDNA demonstrated significant decrease in proliferation capacity and activation of ER stress and unfolded protein response (UPR)-associated genes. These findings shed light on the mechanism underlying the pathogenesis of monogenic diabetes.


Subject(s)
Diabetes Mellitus , Induced Pluripotent Stem Cells , Insulin-Secreting Cells , Cell Differentiation/genetics , Cell Proliferation/genetics , Diabetes Mellitus/metabolism , Endoplasmic Reticulum Stress/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Infant, Newborn , Insulin-Secreting Cells/metabolism , Mutation
17.
J Biol Chem ; 298(8): 102226, 2022 08.
Article in English | MEDLINE | ID: mdl-35787369

ABSTRACT

Increased MAPK signaling is a hallmark of various cancers and is a central regulator of cell survival. Direct ERK1/2 inhibition is considered a promising approach to avoid ERK1/2 reactivation caused by upstream kinases BRAF, MEK1/2, and KRAS, as well as by receptor tyrosine kinase inhibitors, but the dynamics and selectivity of ERK1/2 inhibitors are much less studied compared with BRAF or MEK inhibitors. Using ERK1/2 and downstream kinase ELK1 reporter cell lines of lung cancer (H1299; NRASQ61K), colon cancer (HCT-116; KRASG13D), neuroblastoma (SH-SY5Y), and leukemia (U937), we examined the relationship between ERK inhibition and drug-induced toxicity for five ERK inhibitors: SCH772984, ravoxertinib, LY3214996, ulixertinib, and VX-11e, as well as one MEK inhibitor, PD0325901. Comparing cell viability and ERK inhibition revealed different ERK dependencies for these cell lines. We identify several drugs, such as SCH772984 and VX-11e, which induce excessive toxicity not directly related to ERK1/2 inhibition in specific cell lines. We also show that PD0325901, LY3214996, and ulixertinib are prone to ERK1/2 reactivation over time. We distinguished two types of ERK1/2 reactivation: the first could be reversed by adding a fresh dose of inhibitors, while the second persists even after additional treatments. We also showed that cells that became resistant to the MEK1/2 inhibitor PD0325901 due to ERK1/2 reactivation remained sensitive to ERK1/2 inhibitor ulixertinib. Our data indicate that correlation of ERK inhibition with drug-induced toxicity in multiple cell lines may help to find more selective and effective ERK1/2 inhibitors.


Subject(s)
Antineoplastic Agents , Mitogen-Activated Protein Kinase Kinases , Neuroblastoma , Protein Kinase Inhibitors , Aminopyridines , Antineoplastic Agents/pharmacology , Benzamides , Cell Line, Tumor , Cell Survival , Diphenylamine/analogs & derivatives , Humans , Indazoles , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Neuroblastoma/drug therapy , Piperazines , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Pyrazoles , Pyridones , Pyrimidines , Pyrroles
18.
J Clin Endocrinol Metab ; 107(9): e3654-e3660, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35775692

ABSTRACT

CONTEXT: The syndrome of adrenal insufficiency, obesity, and red hair is a rare autosomal recessive disorder. The majority of disease-causing variants associated with the syndrome are located in the coding region of the POMC gene. OBJECTIVE: This work describes 7 unrelated patients who shared a novel homozygous mutation in the 5'-untranslated region (UTR) of the POMC gene and functionally characterize this novel variant. METHODS: Whole-exome sequencing (WES) with autozygosity mapping, Sanger sequencing, model expression system studies, and RNA sequencing were used for identification of the disease-causing variant and its subsequent functional characterization. Seven unrelated patients of the Perm Tatar ethnic group presented with hypoglycemia and excessive weight gain, low plasma adrenocorticotropin, and cortisol. Five of 7 children had red hair; 6 of 7 patients also showed signs of bronchial obstruction. RESULTS: WES showed shared autozygosity regions overlapping the POMC gene. Sanger sequencing of the POMC 5'-UTR detected a homozygous variant chr2:25391366C > T (hg19) at the splice donor site of intron 1. As demonstrated by the model expression system, the variant led to a significant decrease in the POMC messenger RNA level. Analyses of the patients' haplotypes were suggestive of the founder effect. We estimate that the mutation must have occurred at least 4.27 generations ago (95% CI, 0.86-7.67). CONCLUSION: This report presents a new molecular mechanism of POMC deficiency and contributes to the information on phenotypic variability in patients with this disorder.


Subject(s)
Adrenal Insufficiency , Pro-Opiomelanocortin , 5' Untranslated Regions , Adrenal Insufficiency/diagnosis , Child , Founder Effect , Humans , Mutation , Obesity/complications , Pro-Opiomelanocortin/deficiency , Pro-Opiomelanocortin/genetics , RNA Splicing , RNA, Messenger/genetics
19.
Int J Mol Sci ; 23(11)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35682886

ABSTRACT

The valence band photoemission (VB PE) spectra of the [Ni(Salen)] molecular complex were measured by ultraviolet, soft X-ray and resonant photoemission (ResPE) using photons with energies ranging from 21.2 eV to 860 eV. It was found that the Ni 3d atomic orbitals' (AOs) contributions are most significant for molecular orbitals (MOs), which are responsible for the low-energy PE band at a binding energy of 3.8 eV in the VB PE spectra. In turn, the PE bands in the binding energies range of 8-16 eV are due to the photoionization of the MOs of the [Ni(Salen)] complex with dominant contributions from C 2p AOs. A detailed consideration was made for the ResPE spectra obtained using photons with absorption resonance energies in the Ni 2p3/2, N 1s, and O 1s Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectra. A strong increase in the intensity of the PE band ab was found when using photons with an energy 854.4 eV in the Ni 2p3/2 NEXAFS spectrum. This finding is due to the high probability of the participator-Auger decay of the Ni 2p3/2-13d9 excitation and confirms the relationship between the PE band ab with the Ni 3d-derived MOs.


Subject(s)
Photons , Ethylenediamines , Photoelectron Spectroscopy , Radiography , X-Rays
20.
Plants (Basel) ; 11(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35736716

ABSTRACT

The control of wheat diseases using bioagents is not well studied under field conditions. The present study was aimed at investigating, during four consecutive growing seasons (2017-2020), the efficacy of two integrated crop protection (ICP) systems to control the common wheat diseases for enhancing the productivity and profitability of winter wheat crops and ensuring nutritional and food security. Two environmental-friendly treatments were tested, biological (T1), which contained bioagents and fertilizers, and combined (T2), which included fertilizers and bioagents coupled with lower doses of fungicides. The chemical treatment (T3) was used for comparison with (T1) and (T2). Furthermore, two Russian winter wheat varieties (Nemchinovskaya 17 (V1) and Moscovskaya 40 (V2)) were studied. A randomized complete block design was used with four replicates. Diseases infestation rates for snow mold (SM), root rot (RR), powdery mildew (PM), and Fusarium (Fus), yield performances, and grain quality (measured through protein content) were determined according to the tested treatments, and the economic efficiency was calculated for each treatment. The combined treatment (T2) was the most effective against fungal diseases with 1.8% (SM), 1.2% (RR), 0.9% (PM), and 0.9% (Fus). The highest grain yield (6.8 t·ha-1), protein content (15.2%), and 1000-grain weight (43.7%) were observed for winter wheat variety Moscovskaya 40 with the combined treatment (T2). The highest number of productive stems (N.P.S) (556 stems/m2) was attained for combined treatment (T2), followed by biological treatment (T1) (552 stems/m2) with the variety Nemchinovskaya 17. The profitability (cost-benefit ratio) of the combined treatment (T2) was 2.38 with the Moscovskaya 40 variety (V2), while 2.03 was recorded for the biological treatment. Applying environmentally friendly combined and biological treatments resulted in high wheat yield and net income, as well as healthy products.

SELECTION OF CITATIONS
SEARCH DETAIL
...