Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(25): 27113-27126, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947814

ABSTRACT

The work is focused on the degradation, cytotoxicity, and antibacterial properties, of iron-based biomaterials with a bioactive coating layer. The foam and the compact iron samples were coated with a polyethylene glycol (PEG) polymer layer without and with gentamicin sulfate (PEG + Ge). The corrosion properties of coated and uncoated samples were studied using the degradation testing in Hanks' solution at 37 °C. The electrochemical and static immersion corrosion tests revealed that the PEG-coated samples corroded faster than samples with the bioactive PEG + Ge coating and uncoated samples. The foam samples corroded faster compared with the compact samples. To determine the cytotoxicity, cell viability was monitored in the presence of porous foam and compact iron samples. The antibacterial activity of the samples with PEG and PEG + Ge against Escherichia coli CCM 3954 and Staphylococcus aureus CCM 4223 strains was also tested. Tested PEG + Ge samples showed significant antibacterial activity against both bacterial strains. Therefore, the biodegradable iron-based materials with a bioactive coating could be a suitable successor to the metal materials studied thus far as well as the materials used in the field of medicine.

2.
Materials (Basel) ; 13(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957576

ABSTRACT

Advances in biomedicine and development of modern technologies in the last century have fostered the improvement in human longevity and well-being. This progress simultaneously initiated the need for novel biomaterials. Recently, degradable metallic biomaterials have attracted serious attention in scientific and clinical research owing to their utilization in some specific applications. This work investigates the effect of the polyethylene glycol (PEG) coating of open-cell iron and phosphorus/iron foams on their microstructure and corrosion properties. The addition of phosphorus causes a slight increase in pore size and the deposition of a polymer coating results in a smoothened surface and a moderate decrease in pore diameter. The PEG coating leads to an increase in corrosion rates in both foams and potentially a more desirable product.

SELECTION OF CITATIONS
SEARCH DETAIL
...