Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 14(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891681

ABSTRACT

Crotalus snakebites induce various toxicological effects, encompassing neurological, myotoxic, and cytotoxic symptoms, with potentially fatal outcomes. Investigating venom toxicity is essential for public health, and developing new tools allows for these effects to be studied more comprehensively. The research goals include the elucidation of the physiological consequences of venom exposure and the assessment of toxicity using animal models. Chicken embryos serve as valuable models for assessing venom toxicity through the chick embryotoxicity screening test (CHEST) and the chick chorioallantoic membrane (CAM) assay, particularly useful for evaluating vascular impacts. C. adamanteus venom application resulted in higher embryotoxicity and morphological abnormalities, such as Siamese twins. The CAM assay demonstrated the hemorrhagic effects of venom, varying with venom type and concentration. The irritant potential of both venom types was classified as slight or moderate depending on their concentration. Additionally, acetylcholinesterase (AChE) activity was performed to receive information about organ toxicity. The results show that both venoms induced changes in the whole embryo, heart, and liver weights, but the C. adamanteus venom was identified as more toxic. Specific venom concentrations affected AChE activity in embryonic tissues. These findings underscore the embryotoxic and vasoactive properties of Crotalus venoms, providing valuable insights into their mechanisms of toxicity and potential applications in biomedicine.

2.
PLoS Negl Trop Dis ; 18(4): e0012057, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38557658

ABSTRACT

BACKGROUND: Intraspecific variations in snake venom composition have been extensively documented, contributing to the diverse clinical effects observed in envenomed patients. Understanding these variations is essential for developing effective snakebite management strategies and targeted antivenom therapies. We aimed to comprehensively investigate venoms from three distinct populations of N. mossambica from Eswatini, Limpopo, and KwaZulu-Natal regions in Africa in terms of their protein composition and reactivity with three commercial antivenoms (SAIMR polyvalent, EchiTAb+ICP, and Antivipmyn Africa). METHODOLOGY/PRINCIPAL FINDINGS: Naja mossambica venoms from Eswatini region exhibited the highest content of neurotoxic proteins, constituting 20.70% of all venom proteins, compared to Limpopo (13.91%) and KwaZulu-Natal (12.80%), and was characterized by the highest diversity of neurotoxic proteins, including neurotoxic 3FTxs, Kunitz-type inhibitors, vespryns, and mamba intestinal toxin 1. KwaZulu-Natal population exhibited considerably lower cytotoxic 3FTx, higher PLA2 content, and significant diversity in low-abundant proteins. Conversely, Limpopo venoms demonstrated the least diversity as demonstrated by electrophoretic and mass spectrometry analyses. Immunochemical assessments unveiled differences in venom-antivenom reactivity, particularly concerning low-abundance proteins. EchiTAb+ICP antivenom demonstrated superior reactivity in serial dilution ELISA assays compared to SAIMR polyvalent. CONCLUSIONS/SIGNIFICANCE: Our findings reveal a substantial presence of neurotoxic proteins in N. mossambica venoms, challenging previous understandings of their composition. Additionally, the detection of numerous peptides aligning to uncharacterized proteins or proteins with unknown functions underscores a critical issue with existing venom protein databases, emphasizing the substantial gaps in our knowledge of snake venom protein components. This underscores the need for enhanced research in this domain. Moreover, our in vitro immunological assays suggest EchiTAb+ICP's potential as an alternative to SAIMR antivenom, requiring confirmation through prospective in vivo neutralization studies.


Subject(s)
Antivenins , Naja , Animals , Humans , Antivenins/pharmacology , Naja/metabolism , Proteomics , Prospective Studies , South Africa , Elapid Venoms/toxicity , Proteins
3.
Life (Basel) ; 14(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38398749

ABSTRACT

The effect of 10% dietary flaxseed fed for 3 and 6 weeks on serum hormone levels of fattening gilts, the fatty acid (FA) follicular fluid (FF) composition of small and large antral follicles, and the steroidogenesis and IGF-I secretion by isolated small antral follicles and their response to regulatory hormones (LH, FSH, IGF-I) was studied using immunoassay and gas chromatography analyses. Both supplemental periods increased levels of P4 and IGF-I in blood serum. A shorter period inhibited steroidogenesis (P4, T, E2) and IGF-I secretion by small antral follicles, which was associated with decreased levels of monounsaturated FAs (MUFA) and preferred n-6 polyunsaturated FA (PUFA) metabolism. A longer period stimulated hormone secretion at elevated levels of saturated FAs (SFA) at the expense of MUFAs and PUFAs preferring the n-3 PUFA metabolism. Out of ovarian regulators, only LH and IGF-I were able to alter the secretion of steroids and IGF-I by small follicles of fattening pigs fed a basal diet. The effect of flaxseed on the secretion of follicular hormones after both supplemental periods was altered by all regulatory hormones in a dose-dependent manner. The level of SFAs and PUFAs in FF of large follicles increased with the length of flaxseed feeding, suggesting the suppression of ovulation.

4.
Toxins (Basel) ; 14(4)2022 04 16.
Article in English | MEDLINE | ID: mdl-35448894

ABSTRACT

Antivenom immunotherapy is the mainstay of treatment for snakebite envenoming. Most parts of the world affected by snakebite envenoming depend on broad-spectrum polyspecific antivenoms that are known to contain a low content of case-specific efficacious immunoglobulins. Thus, advances in toxin-specific antibodies production hold much promise in future therapeutic strategies of snakebite envenoming. We report anti-3FTxs monoclonal antibodies developed against N. ashei venom in mice. All the three test mAbs (P4G6a, P6D9a, and P6D9b) were found to be IgG antibodies, isotyped as IgG1. SDS-PAGE analysis of the test mAbs showed two major bands at approximately 55 and 29 kDa, suggestive of immunoglobulin heavy and light chain composition, respectively. The immunoaffinity-purified test mAbs demonstrated higher binding efficacy to the target antigen compared to negative control. Similarly, a cocktail of the test mAbs was found to induce a significantly higher inhibition (p-value < 0.0001) compared to two leading commercial brands of antivenoms on the Kenyan market, implying a higher specificity for the target antigen. Both the test mAbs and 3FTxs polyclonal antibodies induced comparable inhibition (p-value = 0.9029). The inhibition induced by the 3FTxs polyclonal antibodies was significantly different from the two antivenoms (p-value < 0.0001). Our results demonstrate the prospects of developing toxin-specific monoclonal-based antivenoms for snakebite immunotherapy.


Subject(s)
Antineoplastic Agents, Immunological , Snake Bites , Animals , Antibodies, Monoclonal/pharmacology , Antivenins/therapeutic use , Elapid Venoms , Immunoglobulin G , Kenya , Mice , Naja/metabolism , Snake Bites/drug therapy , Three Finger Toxins
5.
Molecules ; 27(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35164152

ABSTRACT

The administration of toxin-specific therapy in snake envenoming is predicated on improved diagnostic techniques capable of detecting specific venom toxins. Various serological tests have been used in detecting snakebite envenoming. Comparatively, enzyme-linked immunosorbent assay (ELISA) has been shown to offer a wider practical application. We report an inhibition ELISA for detecting three-finger toxin (3FTx) proteins in venoms of African spitting cobras. The optimized assay detected 3FTxs in N. ashei (including other Naja sp.) venoms, spiked samples, and venom-challenged mice samples. In venoms of Naja sp., the assay showed inhibition, implying the detection of 3FTxs, but showed little or no inhibition in non-Naja sp. In mice-spiked samples, one-way ANOVA results showed that the observed inhibition was not statistically significant between spiked samples and negative control (p-value = 0.164). Similarly, the observed differences in inhibition between venom-challenged and negative control samples were not statistically significant (p-value = 0.9109). At an LOD of 0.01 µg/mL, the assay was able to confirm the presence of 3FTxs in the samples. Our results show a proof of concept for the use of an inhibition ELISA model as a tool for detecting 3FTxs in the venoms of African spitting cobra snakes.


Subject(s)
Elapid Venoms/analysis , Enzyme-Linked Immunosorbent Assay/methods , Three Finger Toxins/analysis , Analysis of Variance , Animals , Elapidae , Female , Mice , Mice, Inbred BALB C
6.
Molecules ; 26(8)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918763

ABSTRACT

Three-finger toxins are naturally occurring proteins in Elapidae snake venoms. Nowadays, they are gaining popularity because of their therapeutic potential. On the other hand, these proteins may cause undesirable reactions inside the body's cells. A full assessment of the safety of Naja ashei venom components for human cell application is still unknown. The aim of the study was to determine the effect of the exogenous application of three-finger toxins on the cells of monocytes (U-937) and promyelocytes (HL-60), with particular emphasis on the modification of their membranes under the influence of various doses of 3FTx protein fraction (0-120 ng/mL). The fraction exhibiting the highest proportion of 3FTx proteins after size exclusion chromatography (SEC) separation was used in the experiments. The structural response of cell membranes was described on the basis of single-component and multi-component Langmuir monolayers that mimicked the native membranes. The results show that the mechanism of protein-lipid interactions depends on both the presence of lipid polar parts (especially zwitterionic type of lipids) and the degree of membrane saturation (the greatest-for unsaturated lipids). The biochemical indicators reflecting the tested cells (MDA, LDH, cell survival, induction of inflammation, LD50) proved the results that were obtained for the model.


Subject(s)
Elapid Venoms/chemistry , Elapid Venoms/toxicity , Membranes, Artificial , Naja/metabolism , Proteins/toxicity , Animals , Chemical Fractionation , Chromatography, Gel , Female , HL-60 Cells , Humans , L-Lactate Dehydrogenase/metabolism , Lethal Dose 50 , Lipid Peroxidation/drug effects , Male , Malondialdehyde/metabolism , Membranes , Pressure , Temperature , U937 Cells
7.
Toxins (Basel) ; 13(5)2021 04 22.
Article in English | MEDLINE | ID: mdl-33922392

ABSTRACT

The Ethiopian endemic snake of the species Bitis parviocula, recognized for its colorful patterns, might be more interesting as we look deeper into the venom activity. We assayed the effects of venoms from the most widespread venomous African Bitis arietens and closely related species Bitis parviocula using The Hen's Egg Test-Chorioallantoic membrane test (HET-CAM) and Chicken embryotoxicity screening test (CHEST), acetylcholinesterase (AChE) analysis, cytotoxicity assay performed on cell lines and protein analysis of selected venoms. Our results indicated that B. parviocula venom contains vasoactive compounds that have a direct effect on blood vessels. The AChE analysis showed significant ability inhibiting AChE activity in embryonic tissue. Cytotoxicity observed on A549 ATCC® CCL-185™ cells indicates the possible presence of cytotoxic agents in B. parviocula venom. We proved previously described differences in the composition of venom obtained from B. arietans and B. parviocula by using electrophoresis and total protein concentration. Based on similarities in vasoactive effects observed after administration of venoms onto a chicken chorioallantoic membrane, we suggest that venom from B. arietans and B. parviocula might share certain venom proteins responsible for haemotoxicity. The main active components of B. parviocula venom are unknown. Our results suggest that it might be worth performing proteomic analysis of B. parviocula venom as it might contain medically valuable compounds.


Subject(s)
Viper Venoms/toxicity , Viperidae , Animals , Cell Line , Chick Embryo/drug effects , Humans , Toxicity Tests
8.
Biomolecules ; 10(9)2020 09 05.
Article in English | MEDLINE | ID: mdl-32899462

ABSTRACT

The dynamic development of venomics in recent years has resulted in a significant increase in publicly available proteomic data. The information contained therein is often used for comparisons between different datasets and to draw biological conclusions therefrom. In this article, we aimed to show the possible differences that can arise, in the final results of the proteomic experiment, while using different research workflows. We applied two software solutions (PeptideShaker and MaxQuant) to process data from shotgun LC-MS/MS analysis of Naja ashei venom and collate it with the previous report concerning this species. We were able to provide new information regarding the protein composition of this venom but also present the qualitative and quantitative limitations of currently used proteomic methods. Moreover, we reported a rapid and straightforward technique for the separation of the fraction of proteins from the three-finger toxin family. Our results underline the necessary caution in the interpretation of data based on a comparative analysis of data derived from different studies.


Subject(s)
Computational Biology/methods , Naja/metabolism , Proteome/chemistry , Proteomics/methods , Reptilian Proteins/chemistry , Snake Venoms/chemistry , Animals , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , Female , Male , Proteome/metabolism , Software , Tandem Mass Spectrometry
9.
Toxins (Basel) ; 12(8)2020 08 04.
Article in English | MEDLINE | ID: mdl-32759763

ABSTRACT

In contrast to comprehensively investigated antibacterial activity of snake venoms, namely crude venoms and their selected components, little is known about antifungal properties of elapid snake venoms. In the present study, the proteome of two venoms of red spitting cobra Naja pallida (NPV) and Mozambique spitting cobra Naja mossambica (NMV) was characterized using LC-MS/MS approach, and the antifungal activity of crude venoms against three Candida species was established. A complex response to venom treatment was revealed. NPV and NMV, when used at relatively high concentrations, decreased cell viability of C. albicans and C. tropicalis, affected cell cycle of C. albicans, inhibited C. tropicalis-based biofilm formation and promoted oxidative stress in C. albicans, C. glabrata and C. tropicalis cells. NPV and NMV also modulated ammonia pulses during colony development and aging in three Candida species. All these observations provide evidence that NPV and NMV may diminish selected pathogenic features of Candida species. However, NPV and NMV also promoted the secretion of extracellular phospholipases that may facilitate Candida pathogenicity and limit their usefulness as anti-candidal agents. In conclusion, antifungal activity of snake venoms should be studied with great caution and a plethora of pathogenic biomarkers should be considered in the future experiments.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Elapid Venoms/pharmacology , Naja , Animals , Biofilms/drug effects , Candida/physiology , Cell Cycle/drug effects , Elapid Venoms/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Proteome/analysis , Reactive Oxygen Species/metabolism , Reptilian Proteins/analysis
10.
Animals (Basel) ; 10(3)2020 Mar 08.
Article in English | MEDLINE | ID: mdl-32182656

ABSTRACT

Snake venom is an extremely interesting natural mixture of proteins and peptides, characterized by both high diversity and high pharmacological potential. Much attention has been paid to the study of venom composition of different species and also detailed analysis of the properties of individual components. Since proteins and peptides are the active ingredients in venom, rapidly developing proteomic techniques are used to analyze them. During such analyses, one of the routine operations is to measure the protein concentration in the sample. The aim of this study was to compare five methods used to measure protein content in venoms of two snake species: the Viperids representative, Agkistrodon contortrix, and the Elapids representative, Naja ashei. The study showed that for A. contortrix venom, the concentration of venom protein measured by four methods is very similar and only the NanoDrop method clearly stands out from the rest. However, in the case of N. ashei venom, each technique yields significantly different results. We hope that this report will help to draw attention to the problem of measuring protein concentration, especially in such a complex mixture as animal venoms.

11.
Molecules ; 25(2)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31936872

ABSTRACT

One of the key problems of modern infectious disease medicine is the growing number of drug-resistant and multi-drug-resistant bacterial strains. For this reason, many studies are devoted to the search for highly active antimicrobial substances that could be used in therapy against bacterial infections. As it turns out, snake venoms are a rich source of proteins that exert a strong antibacterial effect, and therefore they have become an interesting research material. We analyzed Naja ashei venom for such antibacterial properties, and we found that a specific composition of proteins can act to eliminate individual bacterial cells, as well as the entire biofilm of Staphylococcus epidermidis. In general, we used ion exchange chromatography (IEX) to obtain 10 protein fractions with different levels of complexity, which were then tested against certified and clinical strains of S. epidermidis. One of the fractions (F2) showed exceptional antimicrobial effects both alone and in combination with antibiotics. The protein composition of the obtained fractions was determined using mass spectrometry techniques, indicating a high proportion of phospholipases A2, three-finger toxins, and L-amino acids oxidases in F2 fraction, which are most likely responsible for the unique properties of this fraction. Moreover, we were able to identify a new group of low abundant proteins containing the Ig-like domain that have not been previously described in snake venoms.


Subject(s)
Anti-Bacterial Agents , Biofilms/drug effects , Elapid Venoms , Naja , Staphylococcus epidermidis/physiology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Elapid Venoms/chemistry , Elapid Venoms/pharmacology
12.
Acta Biochim Pol ; 66(2): 207-213, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31172986

ABSTRACT

In the present study, we investigated the antiproliferative activity of Naja ashei full venom (NAV) on human colorectal cancer cells. The NAV-induced antiproliferative effect was associated with cell cycle arrest in S phase and increased number of cells with sub G0/G1 DNA content, which is considered a marker of apoptosis. Apoptosis has also been confirmed with annexin V/PI staining. Furthermore, flow cytometric analysis revealed loss of mitochondrial membrane potential with concomitant increase in cytochrome c and Smac/DIABLO protein content. These effects were associated with the activation of caspase-9 and caspase-3, as well as with PARP cleavage. Moreover, phosphorylation of antiapoptotic Bcl-2 protein in NAV-treated HCT116 was observed. In conclusion, our study for the first time documented antiproliferative/pro-apoptotic effect of NAV in colorectal cancer cells. Our results strongly suggest the involvement of mitochondria in NAV induced apoptosis of cancer cells. Future studies are needed to further examine the potential of NAV in the treatment of colon cancer.


Subject(s)
Apoptosis/drug effects , Colorectal Neoplasms/pathology , Mitochondria/metabolism , Naja , Venoms/pharmacology , Animals , Apoptosis Regulatory Proteins/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/drug therapy , HCT116 Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondrial Proteins/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects
13.
J Cell Physiol ; 234(5): 6147-6160, 2019 05.
Article in English | MEDLINE | ID: mdl-30317566

ABSTRACT

Snake venoms are widely studied in terms of their systemic toxicity and proteolytic, hemotoxic, neurotoxic, and cytotoxic activities. However, little is known about snake-venom-mediated effects when used at low, noncytotoxic concentrations. In the current study, two human fibroblast cell lines of different origin, namely WI-38 fetal lung fibroblasts and BJ foreskin fibroblasts were used to investigate snake-venom-induced adaptive response at a relatively noncytotoxic concentration (0.01 µg/ml). The venoms of Indochinese spitting cobra ( Naja siamensis), western green mamba ( Dendroaspis viridis), forest cobra ( Naja melanoleuca), and southern copperhead ( Agkistrodon contortrix) were considered. Snake venoms promoted FOXO3a-mediated oxidative stress response and to a lesser extent DNA damage response, which lead to changes in cell cycle regulators both at messenger RNA and protein levels, limited cell proliferation and migration, and induced cellular senescence. Taken together, we have shown for the first time that selected snake venoms may also exert adverse effects when used at relatively noncytotoxic concentrations.


Subject(s)
Cellular Senescence/drug effects , Fibroblasts/drug effects , Oxidative Stress/drug effects , Snake Venoms/pharmacology , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , DNA Damage/drug effects , Gene Expression Regulation/drug effects , Humans
14.
Molecules ; 23(3)2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29518026

ABSTRACT

Naja ashei is an African spitting cobra species closely related to N. mossambica and N. nigricollis. It is known that the venom of N. ashei, like that of other African spitting cobras, mainly has cytotoxic effects, however data about its specific protein composition are not yet available. Thus, an attempt was made to determine the venom proteome of N. ashei with the use of 2-D electrophoresis and MALDI ToF/ToF (Matrix-Assisted Laser Desorption/Ionization Time of Flight) mass spectrometry techniques. Our investigation revealed that the main components of analysed venom are 3FTxs (Three-Finger Toxins) and PLA2s (Phospholipases A2). Additionally the presence of cysteine-rich venom proteins, 5'-nucleotidase and metalloproteinases has also been confirmed. The most interesting fact derived from this study is that the venom of N. ashei includes proteins not described previously in other African spitting cobras-cobra venom factor and venom nerve growth factor. To our knowledge, there are currently no other reports concerning this venom composition and we believe that our results will significantly increase interest in research of this species.


Subject(s)
Elapid Venoms/chemistry , Elapid Venoms/metabolism , Naja/metabolism , Animals , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
15.
Theriogenology ; 88: 158-165, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27746005

ABSTRACT

Yucca (Yucca schidigera) is a popular medicinal plant due to its many positive effects on animal and human physiology, including their reproductive systems. To examine the effect of supplemental yucca feeding on sheep reproduction, including ovarian functions and their hormonal regulators, ewes were fed (or not fed, control) yucca powder (1.5 g/head/day, 30 days). Macromorphometric indexes of the oviduct, ovary, and ovarian folliculogenesis were measured. Reproductive hormone levels in the blood were measured using a radioimmunoassay. Granulosa cells were aspirated from the ovary, and their proliferation and apoptosis were detected using immunocytochemistry. To assess secretory activity and its response to gonadotropin, ovarian fragments of treated and control ewes were cultured with and without follicle-stimulating hormone (FSH; 0, 0.1, 1, 10, or 100 IU/mL), and the release of reproductive hormones into the culture medium was evaluated. Finally, to examine the direct action of yucca on the ovary, ovarian fragments from control ewes were cultured with and without yucca extract (1, 10, or 100 µg/mL), and the release of reproductive hormones was measured. Yucca supplementation significantly decreased the size of small antral follicles (2 to <5 mm in diameter), increased accumulation of the apoptosis marker bax, and decreased serum progesterone (P4) and estradiol (E2) levels. It inhibited the release of P4 (but not other hormones), to prevent the stimulatory action of FSH on P4 output and promoted insulin-like growth factor I (IGF-I) release by fragments cultured with FSH. However, yucca supplementation did not affect the size of larger follicles and number of follicles, volume and weight of ovaries, length and weight of oviducts, caspase 3 accumulation, cell proliferation, testosterone (T) or IGF-I serum levels, or T or E2 release by cultured ovarian fragments and their response to FSH. Yucca addition to culture medium inhibited P4 and IGF-I, but not T or E2 release at the lowest (1 µg/mL) dose, and stimulated P4, but not T, E2, or IGF-I release at the highest (100 µg/mL) dose. These data suggest that yucca supplementation can reduce small antral ovarian follicle development possibly via the stimulation of apoptosis of their granulosa cells, suppression of ovarian P4 and E2 release, and alteration of ovarian IGF-I output and ovarian response to gonadotropin. Thus, yucca can directly affect P4 and IGF-I release by ovine ovarian cells.


Subject(s)
Animal Feed/analysis , Diet/veterinary , Ovary/physiology , Sheep/physiology , Yucca , Animal Nutritional Physiological Phenomena , Animals , Dietary Supplements , Female
16.
Toxins (Basel) ; 8(12)2016 12 13.
Article in English | MEDLINE | ID: mdl-27983581

ABSTRACT

Snake venom is a complex mixture of proteins and peptides which in the Viperidae is mainly hemotoxic. The diversity of these components causes the venom to be an extremely interesting object of study. Discovered components can be used in search for new pharmaceuticals used primarily in the treatment of diseases of the cardiovascular system. In order to determine the protein composition of the southern copperhead venom, we have used high resolution two dimensional electrophoresis and MALDI ToF/ToF MS-based identification. We have identified 10 groups of proteins present in the venom, of which phospholipase A2 and metalloprotease and serine proteases constitute the largest groups. For the first time presence of 5'-nucleotidase in venom was found in this group of snakes. Three peptides present in the venom were also identified. Two of them as bradykinin-potentiating agents and one as an inhibitor.


Subject(s)
Crotalid Venoms/chemistry , Peptides/analysis , Reptilian Proteins/analysis , Electrophoresis, Gel, Two-Dimensional , Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
17.
Molecules ; 21(10)2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27775574

ABSTRACT

Snake venom is a rich source of peptides and proteins with a wide range of actions. Many of the venom components are currently being tested for their usefulness in the treatment of many diseases ranging from neurological and cardiovascular to cancer. It is also important to constantly search for new proteins and peptides with properties not yet described. The venom of Vipera berus berus has hemolytic, proteolytic and cytotoxic properties, but its exact composition and the factors responsible for these properties are not known. Therefore, an attempt was made to identify proteins and peptides derived from this species venom by using high resolution two-dimensional electrophoresis and MALDI ToF/ToF mass spectrometry. A total of 11 protein classes have been identified mainly proteases but also l-amino acid oxidases, C-type lectin like proteins, cysteine-rich venom proteins and phospholipases A2 and 4 peptides of molecular weight less than 1500 Da. Most of the identified proteins are responsible for the highly hemotoxic properties of the venom. Presence of venom phospholipases A2 and l-amino acid oxidases cause moderate neuro-, myo- and cytotoxicity. All successfully identified peptides belong to the bradykinin-potentiating peptides family. The mass spectrometry data are available via ProteomeXchange with identifier PXD004958.


Subject(s)
Peptides/isolation & purification , Proteome/isolation & purification , Viper Venoms/metabolism , Viperidae/metabolism , Animals , Chromatography, High Pressure Liquid , L-Amino Acid Oxidase/isolation & purification , Mass Spectrometry , Molecular Weight , Phospholipases A2/isolation & purification
18.
Anim Sci J ; 87(9): 1157-66, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27581561

ABSTRACT

The aim of our experiment was to study how synbiotics are able to deal with the problems of post-weaning piglets. Lactobacillus plantarum - Biocenol(TM) LP96 (CCM 7512), Lactobacillus fermentum - Biocenol(TM) LF99 (CCM 7514) and flaxseed (rich in n-3 polyunsaturated fatty acids) were administered to 36 conventional piglets from a problematic breed with confirmed presence of enterotoxigenic Escherichia coli and Coronavirus. The experimental piglets were supplied with probiotic cheeses and crushed flax-seed in the period starting 10 days before weaning and lasting up to 14 days post-weaning. Piglets in the control group were supplied only control cheese. The impact of such additives on the release of lactate dehydrogenase (LDH; spectroscopic and electrophoretic assay), alteration of immunity (index of metabolic activity), jejunum histology (light microscopy), and health of conventional piglets from a problematic breed (monitoring of hematology, consistency and moisture of feces and body temperature) were examined. We found significant decrease in LDH leakage in the blood serum and tissue extracts, indicating better cell membrane integrity in the individual organs of animals. Probiotics and flaxseed applied together seem to be a good source of nutrients to improve the immune status and the integrity of jejunum mucosa during infection. © 2015 Japanese Society of Animal Science.


Subject(s)
Animal Feed , Flax , Immunity, Innate , Intestinal Mucosa/enzymology , Intestinal Mucosa/immunology , Jejunum/enzymology , Jejunum/immunology , L-Lactate Dehydrogenase/metabolism , Lactobacillus plantarum , Limosilactobacillus fermentum , Swine/immunology , Swine/microbiology , Synbiotics/administration & dosage , Animal Nutritional Physiological Phenomena/physiology , Animals , Cell Membrane/ultrastructure , Coronavirus , Escherichia coli , Intestinal Mucosa/ultrastructure , Jejunum/ultrastructure , Microscopy, Electron, Transmission , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...