Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Robot AI ; 9: 1006786, 2022.
Article in English | MEDLINE | ID: mdl-36530495

ABSTRACT

Swarm behaviors offer scalability and robustness to failure through a decentralized and distributed design. When designing coherent group motion as in swarm flocking, virtual potential functions are a widely used mechanism to ensure the aforementioned properties. However, arbitrating through different virtual potential sources in real-time has proven to be difficult. Such arbitration is often affected by fine tuning of the control parameters used to select among the different sources and by manually set cut-offs used to achieve a balance between stability and velocity. A reliance on parameter tuning makes these methods not ideal for field operations of aerial drones which are characterized by fast non-linear dynamics hindering the stability of potential functions designed for slower dynamics. A situation that is further exacerbated by parameters that are fine-tuned in the lab is often not appropriate to achieve satisfying performances on the field. In this work, we investigate the problem of dynamic tuning of local interactions in a swarm of aerial vehicles with the objective of tackling the stability-velocity trade-off. We let the focal agent autonomously and adaptively decide which source of local information to prioritize and at which degree-for example, which neighbor interaction or goal direction. The main novelty of the proposed method lies in a Gaussian kernel used to regulate the importance of each element in the swarm scheme. Each agent in the swarm relies on such a mechanism at every algorithmic iteration and uses it to tune the final output velocities. We show that the presented approach can achieve cohesive flocking while at the same time navigating through a set of way-points at speed. In addition, the proposed method allows to achieve other desired field properties such as automatic group splitting and joining over long distances. The aforementioned properties have been empirically proven by an extensive set of simulated and field experiments, in communication-full and communication-less scenarios. Moreover, the presented approach has been proven to be robust to failures, intermittent communication, and noisy perceptions.

2.
Bioinspir Biomim ; 16(6)2021 11 12.
Article in English | MEDLINE | ID: mdl-34653998

ABSTRACT

A novel approach for achieving fast evasion in self-localized swarms of unmanned aerial vehicles (UAVs) threatened by an intruding moving object is presented in this paper. Motivated by natural self-organizing systems, the presented approach of fast and collective evasion enables the UAV swarm to avoid dynamic objects (interferers) that are actively approaching the group. The main objective of the proposed technique is the fast and safe escape of the swarm from an interferer discovered in proximity. This method is inspired by the collective behavior of groups of certain animals, such as schools of fish or flocks of birds. These animals use the limited information of their sensing organs and decentralized control to achieve reliable and effective group motion. The system presented in this paper is intended to execute the safe coordination of UAV swarms with a large number of agents. Similar to natural swarms, this system propagates a fast shock of information about detected interferers throughout the group to achieve dynamic and collective evasion. The proposed system is fully decentralized using only onboard sensors to mutually localize swarm agents and interferers, similar to how animals accomplish this behavior. As a result, the communication structure between swarm agents is not overwhelmed by information about the state (position and velocity) of each individual and it is reliable to communication dropouts. The proposed system and theory were numerically evaluated and verified in real-world experiments.


Subject(s)
Algorithms , Unmanned Aerial Devices , Animals , Mass Gatherings
3.
Bioinspir Biomim ; 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33137792

ABSTRACT

This article presents a unique framework for deploying decentralized and infrastructure-independent swarms of homogeneous aerial vehicles in the real world without explicit communication. This is a requirement in swarm research, which anticipates that global knowledge and communication will not scale well with the number of robots. The system architecture proposed in this article employs the UVDAR technique to directly perceive the local neighborhood for direct mutual localization of swarm members. The technique allows for decentralization and high scalability of swarm systems, such as can be observed in fish schools, bird flocks, or cattle herds. The bio-inspired swarming model that has been developed is suited for real-world deployment of large particle groups in outdoor and indoor environments with obstacles. The collective behavior of the model emerges from a set of local rules based on direct observation of the neighborhood using onboard sensors only. The model is scalable, requires only local perception of agents and the environment, and requires no communication among the agents. Apart from simulated scenarios, the performance and usability of the entire framework is analyzed in several real-world experiments with a fully-decentralized swarm of UAV deployed in outdoor conditions. To the best of our knowledge, these experiments are the first deployment of decentralized bio-inspired compact swarms of UAV without the use of a communication network or shared absolute localization. The entire system is available as open-source at https://github.com/ctu-mrs.

SELECTION OF CITATIONS
SEARCH DETAIL
...