Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203587

ABSTRACT

The garment industry demands stamping processes that are increasingly more agile and less damaging to the environment. In this scenario, digital printing, with the sublimation transfer printing technique, presents itself as a viable option for synthetic textile substrates. Among the synthetic fibres, polyamide (P.A.) fibres stand out, as they are light, soft, durable, and boast moderate sweat absorption; however, before sublimation, superficial treatment is necessary in order to present good results such as withstanding washing and maintaining colour intensity. This study addresses the surface modification of the PA6.6 textile substrate by activating non-thermal plasma at atmospheric pressure to receive dye through the sublimation method with dispersed dye. The knitted PA6.6 fabric surface treatment was performed with plasma application at atmospheric pressure using air in the Plasmatreater AS400 equipment. The sublimation transfer effects were evaluated by wash fastness and colourimetric tests. To assess the wettability effect of the control and treated samples, a contact angle test was carried out on PA6.6 samples. Fourier transform infrared spectroscopy (FTIR) proved the changes in chemical functional groups in the fibres. The results showed a decrease in the contact angle of the textile surface, 4-5 grayscale results for colour change and transfer for washing, and an increase in colour strength. In the FTIR tests, there is an increase in the transmittance value of aromatic, carboxylic groups (C=O, 580 cm-1), amides (N=H, 1630 cm-1), and methyl groups (CH 1369 to 1463 cm-1) as well as the presence of new functional groups in the 3064 cm-1 and 2860 cm-1 bands. These conditions allowed sublimation in the knitted PA6.6 fabric and showed increased colour strength and good wash fastness.

2.
Micromachines (Basel) ; 12(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063804

ABSTRACT

The chemical, structural, morphological, and optical properties of Al-doped TiO2 thin films, called TiO2/Al2O3 nanolaminates, grown by plasma-enhanced atomic layer deposition (PEALD) on p-type Si <100> and commercial SLG glass were discussed. High-quality PEALD TiO2/Al2O3 nanolaminates were produced in the amorphous and crystalline phases. All crystalline nanolaminates have an overabundance of oxygen, while amorphous ones lack oxygen. The superabundance of oxygen on the crystalline film surface was illustrated by a schematic representation that described this phenomenon observed for PEALD TiO2/Al2O3 nanolaminates. The transition from crystalline to amorphous phase increased the surface hardness and the optical gap and decreased the refractive index. Therefore, the doping effect of TiO2 by the insertion of Al2O3 monolayers showed that it is possible to adjust different parameters of the thin-film material and to control, for example, the mobility of the hole-electron pair in the metal-insulator-devices semiconductors, corrosion protection, and optical properties, which are crucial for application in a wide range of technological areas, such as those used to manufacture fluorescence biosensors, photodetectors, and solar cells, among other devices.

3.
Polymers (Basel) ; 12(9)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32961866

ABSTRACT

This work proposes the use of a dielectric barrier discharge (DBD) reactor operating at atmospheric pressure (AP) using air and sub-atmospheric pressure (SAP) using air or argon to treat polyamide 6.6 (PA6.6) fabrics. Here, plasma dosages corresponding to 37.5 kW·min·m-2 for AP and 7.5 kW·min·m-2 for SAP in air or argon were used. The hydrophilicity aging effect property of untreated and DBD-treated PA6.6 samples was evaluated from the apparent contact angle. The surface changes in physical microstructure were studied by field emission scanning electron microscopy (FE-SEM). To prove the changes in chemical functional groups in the fibers, Fourier transform infrared spectroscopy (FTIR) was used, and the change in surface bonds was evaluated by energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). In addition, the whiteness effect was investigated by the color spectrophotometry (Datacolor) technique. The results showed that the increase in surface roughness by the SAP DBD treatment contributed to a decrease in and maintenance of the hydrophilicity of PA6.6 fabrics for longer. The SAP DBD in air treatment promoted an enhancement of the aging effect with a low plasma dosage (5-fold reduction compared with AP DBD treatment). Finally, the SAP DBD treatment using argon functionalizes the fabric surface more efficiently than DBD treatments in air.

SELECTION OF CITATIONS
SEARCH DETAIL
...