Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Molecules ; 28(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37175378

ABSTRACT

(1) Background: Citrus honey constitutes a unique monofloral honey characterized by a distinctive aroma and unique taste. The non-targeted chemical analysis can provide pivotal information on chemical markers that differentiate honey based on its geographical and botanical origin. (2) Methods: Within the PRIMA project "PLANT-B", a metabolomics workflow was established to unveil potential chemical markers of orange blossom honey produced in case study areas of Egypt, Italy, and Greece. In some of these areas, aromatic medicinal plants were cultivated to enhance biodiversity and attract pollinators. The non-targeted chemical analysis and metabolomics were conducted using ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). (3) Results: Forty compounds were disclosed as potential chemical markers, enabling the differentiation of the three orange blossom honeys according to geographical origin. Italian honey showed a preponderance of flavonoids, while in Greek honey, terpenoids and iridoids were more abundant than flavonoids, except for hesperidin. In Egyptian honey, suberic acid and a fatty acid ester derivative emerged as chemical markers. New, for honey, furan derivatives were identified using GC-MS in Greek samples. (4) Conclusions: The application of UHPLC-HRMS metabolomics combined with an elaborate melissopalynological analysis managed to unveil several potential markers of Mediterranean citrus honey potentially associated with citrus crop varieties and the local indigenous flora.


Subject(s)
Citrus sinensis , Citrus , Honey , Gas Chromatography-Mass Spectrometry , Chromatography, High Pressure Liquid , Honey/analysis , Citrus sinensis/chemistry , Mass Spectrometry , Flowers/chemistry , Flavonoids/analysis , Biomarkers/analysis , Metabolomics
2.
Environ Sci Pollut Res Int ; 30(15): 44234-44250, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36683105

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), heavy metals, and plasticizer residues are continuously released into the environment. The use of living organisms, such as Apis mellifera L. and honey, is advantageous as bioindicator of the environmental health status, instead of traditional monitoring methods, showing the ability to record spatial and temporal pollutant variations. The PAHs and heavy metal presence were determined in two sampling years (2017 and 2018) in five different locations in the Molise region (Italy), characterized by different pollution levels. During 2017, most PAHs in all samples were lower than limit of detection (LOD), while in 2018, their mean concentration in bee and honey samples was of 3 µg kg-1 and 35 µg kg-1, respectively. For heavy metals, lower values were detected in 2017 (Be, Cd, and V below LOD), while in 2018, the mean concentrations were higher, 138 µg kg-1 and 69 µg kg-1, in bees and honey, respectively. Honey has been used as indicator of the presence of phthalate esters and bisphenol A in the environment. The satisfactory results confirmed that both bees and honey are an important tool for environmental monitoring. The chemometric analysis highlighted the differences in terms of pollutant concentration and variability in the different areas, validating the suitability of these matrices as bioindicators.


Subject(s)
Environmental Pollutants , Honey , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Bees , Animals , Honey/analysis , Environmental Biomarkers , Plasticizers/analysis , Biological Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Metals, Heavy/analysis , Environmental Pollutants/analysis , Environmental Monitoring/methods
3.
Front Microbiol ; 13: 931994, 2022.
Article in English | MEDLINE | ID: mdl-35958131

ABSTRACT

The increased mobility of goods, people, and animals worldwide has caused the spread of several arthropod vectors, leading to an increased risk of animal and human infections. Aedes koreicus is a common species in South Korea, China, Japan, and Russia. Due to its cold-resistant dormant eggs, the adults last from the late summer until the autumn seasons. For these reasons, it seems to be better adapted to colder temperatures, favoring its colonization of hilly and pre-alpine areas. Its first appearance in Europe was in 2008 in Belgium, where it is currently established. The species was subsequently detected in Italy in 2011, European Russia, Germany, the Swiss-Italian border region, Hungary, Slovenia, Crimea, Austria, the Republic of Kazakhstan, and the Netherlands. The role of A. koreicus in the transmission of vector-borne pathogens remains unclear. The available scientific evidence is very old, often not available in English or not indexed in international databases, and therefore difficult to find. According to the literature reviewed, A. koreicus can be considered a new invasive mosquito species in Europe, establishing populations on the European continent. In addition, experimental evidence demonstrated its vector competence for both Dirofilaria immitis and Chikungunya and is relatively low for ZIKA but not for Western Nile Virus. On the other hand, even if the field evidence does not confirm the experimental findings, it is currently not possible to exclude with absolute certainty the potential involvement of this species in the spread, emergence, or re-emergence of these vector-borne disease agents.

4.
J Fungi (Basel) ; 8(5)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35628680

ABSTRACT

Nosemosis is a disease triggered by the single-celled spore-forming fungi Nosema apis and Nosema ceranae, which can cause extensive colony losses in honey bees (Apis mellifera L.). Fumagillin is an effective antibiotic treatment to control nosemosis, but due to its toxicity, it is currently banned in many countries. Accordingly, in the beekeeping sector, there is a strong demand for alternative ecological methods that can be used for the prevention and therapeutic control of nosemosis in honey bee colonies. Numerous studies have shown that plant extracts, RNA interference (RNAi) and beneficial microbes could provide viable non-antibiotic alternatives. In this article, recent scientific advances in the biocontrol of nosemosis are summarized.

5.
Vet Sci ; 9(5)2022 May 12.
Article in English | MEDLINE | ID: mdl-35622764

ABSTRACT

The balance of the gut microbiome is important for the honey bee's growth and development, immune function and defense against pathogens. The use of a beneficial bacteria-based strategy for the prevention and biocontrol of American foulbrood (AFB) and European foulbrood (EFB) diseases in honey bees offers interesting prospects. Lactic acid bacteria (LAB) are common inhabitants of the gastrointestinal tract of the honey bee. Among LABs associated with bee gut microbiota, Lactiplantibacillus plantarum (previously Lactobacillus plantarum) and Apilactobacillus kunkeei (formerly classified as Lactobacillus kunkeei) are two of the most abundant species. In this study, four Lactiplantibacillus plantarum strains and four Apilactobacillus kunkeei strains, isolated from the gastrointestinal tract of honey bee (Apis mellifera L.) were selected for their in vitro inhibition ability of Paenibacillus larvae ATCC 9545 and Melissococccus plutonius ATCC 35311. In addition, these LABs have been characterized through some biochemical and functional characteristics: cell surface properties (hydrophobicity and auto-aggregation), carbohydrates assimilation and enzymatic activities. The antimicrobial, biochemical and cell surface properties of these LABs have been functional to their candidature as potential probiotics in beekeeping and for the biocontrol of AFB and EFB diseases.

6.
Insects ; 13(3)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35323606

ABSTRACT

Honey bees (Apis mellifera) are agriculturally important pollinators. Over the past decades, significant losses of wild and domestic bees have been reported in many parts of the world. Several biotic and abiotic factors, such as change in land use over time, intensive land management, use of pesticides, climate change, beekeeper's management practices, lack of forage (nectar and pollen), and infection by parasites and pathogens, negatively affect the honey bee's well-being and survival. The gut microbiota is important for honey bee growth and development, immune function, protection against pathogen invasion; moreover, a well-balanced microbiota is fundamental to support honey bee health and vigor. In fact, the structure of the bee's intestinal bacterial community can become an indicator of the honey bee's health status. Lactic acid bacteria are normal inhabitants of the gastrointestinal tract of many insects, and their presence in the honey bee intestinal tract has been consistently reported in the literature. In the first section of this review, recent scientific advances in the use of LABs as probiotic supplements in the diet of honey bees are summarized and discussed. The second section discusses some of the mechanisms by which LABs carry out their antimicrobial activity against pathogens. Afterward, individual paragraphs are dedicated to Chalkbrood, American foulbrood, European foulbrood, Nosemosis, and Varroosis as well as to the potentiality of LABs for their biological control.

7.
J Fungi (Basel) ; 7(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066127

ABSTRACT

Ascosphaera apis is an entomopathogenic fungus that affects honeybees. In stressful conditions, this fungus (due not only to its presence, but also to the combination of other biotic and abiotic stressors) can cause chalkbrood disease. In recent years, there has been increasing attention paid towards the use of lactic acid bacteria (LAB) in the honeybees' diets to improve their health, productivity and ability to resist infections by pathogenic microorganisms. The screening of 22 strains of Lactiplantibacillus plantarum, isolated from the gastrointestinal tracts of honeybees and beebread, led to the selection of five strains possessing high antagonistic activity against A. apis. This study focused on the antifungal activity of these five strains against A. apis DSM 3116 and DSM 3117 using different matrices: cell lysate, broth culture, cell-free supernatant and cell pellet. In addition, some functional properties and the antioxidant activity of the five L. plantarum strains were evaluated. All five strains exhibited high antagonistic activity against A. apis, good surface cellular properties (extracellular polysaccharide (EPS) production and biofilm formation) and antioxidant activity. Although preliminary, these results are encouraging, and in future investigations, the effectiveness of these bacteria as probiotics in honeybee nutrition will be tested in vivo in the context of an eco-friendly strategy for the biological control of chalkbrood disease.

8.
Microorganisms ; 8(10)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066358

ABSTRACT

Lactic acid bacteria could positively affect the health of honey bees, including nutritional supplementation, immune system development and pathogen colonization resistance. Based on these considerations the present study evaluated predominant Lactic Acid Bacteria (LAB) species from beebread as well as from the social stomach and midgut of Apis mellifera ligustica honey bee foragers. In detail, for each compartment, the diversity in species and biotypes was ascertained through multiple culture-dependent approaches, consisting of Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE), 16S rRNA gene sequencing and Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR). The study of a lactic acid bacteria community, performed with PCR-DGGE and sequence analysis targeting the V1-V3 region of the 16S rRNA gene (rDNA), highlighted the presence of a few species, including Apilactobacillus kunkeei, Lactiplantibacillus plantarum, Fructobacillus fructosus, Levilactobacillus brevis and Lactobacillus delbrueckii subsp. lactis. Depending on the different compartments, diverse levels of biodiversity in species were found. Particularly, a very low inter-species biodiversity was detected in the midgut that was prevalently dominated by the presence of Apilactobacillus kunkeei. On the other hand, the beebread was characterized by a reasonable biodiversity showing the presence of five species and the predominance of Apilactobacillus kunkeei, Lactiplantibacillus plantarum and Fructobacillus fructosus. The RAPD-PCR analysis performed on the three predominant species allowed the differentiation into several biotypes for each species. Moreover, a relationship between biotypes and compartments has been detected and each biotype was able to express a specific biochemical profile. The biotypes that populated the social stomach and midgut were able to metabolize sugars considered toxic for bees while those isolated from beebread could contribute to release useful compounds with functional properties. Based on this knowledge, new biotechnological approaches could be developed to improve the health of honey bees and the quality of bee products.

9.
Antibiotics (Basel) ; 9(8)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722196

ABSTRACT

Paenibacillus larvae is the causative agent of American foulbrood (AFB), a severe bacterial disease that affects larvae of honeybees. The present study evaluated, in vitro, antimicrobial activity of sixty-one Lactiplantibacillus plantarum strains, against P. larvae ATCC 9545. Five strains (P8, P25, P86, P95 and P100) that showed the greatest antagonism against P. larvae ATCC 9545were selected for further physiological and biochemical characterizations. In  particular, the hydrophobicity, auto-aggregation, exopolysaccharides production, osmotic tolerance, enzymatic activity and carbohydrate assimilation patterns were evaluated. The five L. plantarum selected strains showed suitable physical and biochemical properties for their use as probiotics in the honeybee diet. The selection and availability of new selected bacteria with good functional characteristics and with antagonistic activity against P. larvae opens up interesting perspectives for new biocontrol strategies of diseases such as AFB.

10.
Antibiotics (Basel) ; 9(5)2020 May 18.
Article in English | MEDLINE | ID: mdl-32443465

ABSTRACT

: Lactic acid bacteria (LAB) are an important group of honeybee gut microbiota. These bacteria are involved in food digestion, stimulate the immune system, and may antagonize undesirable microorganisms in the gastrointestinal tract. Lactobacillus kunkeei is a fructophilic lactic acid bacterium (FLAB) most frequently found in the gastrointestinal tracts of honeybees. Ascosphaera apis is an important pathogenic fungus of honeybee larvae; it can colonize the intestine, especially in conditions of nutritional or environmental stress that cause microbial dysbiosis. In this work, some functional properties of nine selected L. kunkeei strains were evaluated. The study focused on the antifungal activity of these strains against A. apis DSM 3116, using different matrices: cell lysate, broth culture, cell-free supernatant, and cell pellet. The cell lysate showed the highest antifungal activity. Moreover, the strains were shown to possess good cell-surface properties (hydrophobicity, auto-aggregation, and biofilm production) and a good resistance to high sugar concentrations. These L. kunkeei strains were demonstrated to be functional for use in "probiotic syrup", useful to restore the symbiotic communities of the intestine in case of dysbiosis and to exert a prophylactic action against A. apis.

11.
JAMA Dermatol ; 149(4): 466-71, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23715595

ABSTRACT

IMPORTANCE: During guideline development, it is essential to systematically review existing guidelines that may be suitable for adaptation; however, such review is laborious and may not always uncover useful guidelines. OBJECTIVE: To identify existing clinical practice guidelines and assess their methodologic quality and suitability for adaptation in the German evidence-based guideline "Prevention of Skin Cancer." EVIDENCE ACQUISITION: A systematic literature search was performed across a range of databases and homepages of guideline development institutions. The AGREE Instrument (Appraisal of Guidelines Research and Evaluation) was used to assess the methodologic quality of selected guidelines. RESULTS: A total of 480 citations were identified and screened. Of these, 12 guidelines were deemed suitable for potential adaptation. After comprehensive quality assessment, only 2 melanoma guidelines, one from Australia/New Zealand and the other from Scotland, were identified as being of high methodologic quality according to predefined selection criteria. Subsequent synopsis, however, revealed that neither of these guidelines was sufficiently comprehensive for full adaptation. CONCLUSIONS AND RELEVANCE: It is surprising that most existing skin cancer guidelines that contain aspects on prevention are not appropriate for adaptation, with most lacking methodologic quality, particularly rigor applied during the development process. Of the 2 guidelines that met the predefined quality criteria, only a few aspects--limited to malignant melanoma--were adaptable. We conclude that, despite the labor-intensive search for existing guidelines, a de novo development, including systematic literature review, is indispensible for the development of the German evidence-based guideline Prevention of Skin Cancer.


Subject(s)
Evidence-Based Medicine/methods , Guideline Adherence , Practice Guidelines as Topic/standards , Skin Neoplasms/prevention & control , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...