Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 320: 115769, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35944316

ABSTRACT

This review aims to assess different technologies for the on-site treatment of hospital wastewater (HWW) to remove pharmaceutical compounds (PhCs) as sustances of emerging concern at a bench, pilot, and full scales from 2014 to 2020. Moreover, a rough characterisation of hospital effluents is presented. The main detected PhCs are antibiotics and psychiatric drugs, with concentrations up to 1.1 mg/L. On the one hand, regarding the presented technologies, membrane bioreactors (MBRs) are a good alternative for treating HWW with PhCs removal values higher than 80% in removing analgesics, anti-inflammatories, cardiovascular drugs, and some antibiotics. Moreover, this system has been scaled up to the pilot plant scale. However, some target compounds are still present in the treated effluent, such as psychiatric and contrast media drugs and recalcitrant antibiotics (erythromycin and sulfamethoxazole). On the other hand, ozonation effectively removes antibiotics found in the HWW (>93%), and some studies are carried out at the pilot plant scale. Even though, some families, such as the X-ray contrast media, are recalcitrant to ozone. Other advanced oxidation processes (AOPs), such as Fenton-like or UV treatments, seem very effective for removing pharmaceuticals, Antibiotic Resistance Bacteria (ARBs) and Antibiotic Resistance Genes (ARGs). However, they are not implanted at pilot plant or full scale as they usually consider extra reactants such as ozone, iron, or UV-light, making the scale-up of the processes a challenging task to treat high-loading wastewater. Thus, several examples of biological wastewater treatment methods combined with AOPs have been proposed as the better strategy to treat HWW with high removal of PhCs (generally over 98%) and ARGs/ARBs (below the detection limit) and lower spending on reactants. However, it still requires further development and optimisation of the integrated processes.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Anti-Bacterial Agents , Contrast Media , Hospitals , Humans , Waste Disposal, Fluid/methods , Wastewater , Water Pollutants, Chemical/analysis , Water Purification/methods
2.
Environ Sci Pollut Res Int ; 21(21): 12129-34, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24764009

ABSTRACT

The treatment of a non-biodegradable agrochemical wastewater has been studied by coupling of preliminary coagulation-flocculation step and further Fenton oxidation. High percentages of chemical oxygen demand (COD) removal (up to 58 %) were achieved in a first step using polyferric chloride as coagulant. This reduced significantly the amount of H2O2 required in the further Fenton oxidation. Using the stoichiometric amount relative to COD around 80 % of the remaining organic load was mineralized. The combined treatment allowed achieving the regional discharge limits of ecotoxicity at a cost substantially lower than the solution used so far where these wastewaters are managed as hazardous wastes.


Subject(s)
Industrial Waste/analysis , Pesticides/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Biological Oxygen Demand Analysis , Flocculation , Hydrogen Peroxide , Iron , Oxidation-Reduction
3.
J Hazard Mater ; 181(1-3): 127-32, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20537462

ABSTRACT

A coupled coagulation-Fenton process was applied for the treatment of cosmetic industry effluents. In a first step, FeSO(4) was used as coagulant and the non-precipitated Fe(2+) remaining in dissolution was used as catalyst in the further Fenton process. In the coagulation process a huge decrease in total organic carbon (TOC) was achieved, but the high concentration of phenol derivatives was not diminished. The decrease in TOC in the coagulation step significantly reduces the amount of H(2)O(2) required in the Fenton process for phenol depletion. The coupled process, using a H(2)O(2) dose of only 2 g l(-1), reduced TOC and total phenol to values lower than 40 and 0.10 mg l(-1), respectively. The short reaction period (less than 15 min) in TOC and phenol degradation bodes well for improving treatment in a continuous regime. The combination of both processes significantly reduced the ecotoxicity of raw effluent and markedly increased its biodegradability, thus allowing easier treatment by the conventional biological units in conventional sewage treatment plants (STPs).


Subject(s)
Cosmetics/chemistry , Hydrogen Peroxide/chemistry , Industrial Waste/prevention & control , Iron/chemistry , Water Pollutants, Chemical/chemistry , Biodegradation, Environmental , Ecotoxicology/methods , Oxidants , Phenol/chemistry , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...