Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Materials (Basel) ; 16(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37109991

ABSTRACT

In this paper, recycled polyethylene terephthalate (PET) was used to produce eco-innovative engineering materials with optimized performance, minimizing the environmental impact deriving from plastic consumption activity and limiting the continuous consumption of raw materials. The recycled PET obtained from waste bottles, commonly used to improve the ductility of concrete, has been used with a different weight percentage as plastic aggregate in the replacement of sand in cement mortars and as fibers added to premixed screeds. In detail, the effect of PET treatment (chemical or mechanical) on the thermal performance was evaluated. Non-destructive physical tests were conducted to determine the thermal conductivity of the investigated building materials. The performed tests showed that chemically depolymerized PET aggregate and recycled PET fibers derived from plastic wastes can reduce the heat conduction capacity of the cementitious materials with limited reduction in compressive strength. The results of the experimental campaign have made it possible to evaluate the influence of the recycled material on the physical and mechanical properties and its feasibility in non-structural applications.

2.
Materials (Basel) ; 16(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36903226

ABSTRACT

The building and construction industry is a key sector behind the ecological transition in that it is one of the main responsible factors in the consumption of natural resources. Thus, in line with circular economy, the use of waste aggregates in mortars is a possible solution to increase the sustainability of cement materials. In the present paper, polyethylene terephthalate (PET) from bottle scraps (without chemical pretreatment) was used as aggregate in cement mortars to replace conventional sand aggregate (20%, 50% and 80% by weight). The fresh and hardened properties of the innovative mixtures proposed were evaluated through a multiscale physical-mechanical investigation. The main results of this study show the feasibility of the reuse of PET waste aggregates as substitutes for natural aggregates in mortars. The mixtures with bare PET resulted in less fluid than the specimens with sand; this was ascribed to the higher volume of the recycled aggregates with respect to sand. Moreover, PET mortars showed a high tensile strength and energy absorption capacity (with Rf = 1.9 ÷ 3.3 MPa, Rc = 6 ÷ 13 MPa); instead, sand samples were characterized by a brittle rupture. The lightweight specimens showed a thermal insulation increase ranging 65-84% with respect to the reference; the best results were obtained with 800 g of PET aggregate, characterized by a decrease in conductivity of approximately 86% concerning the control. The properties of these environmentally sustainable composite materials may be suitable for non-structural insulating artifacts.

3.
Materials (Basel) ; 16(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36984279

ABSTRACT

Stabilization/solidification (S/S) is becoming increasingly important, as it allows the remediation of contaminated sediments and their recovery into materials for civil engineering. This research proposes a cement-free cold granulation process for manufactured low-cost aggregates from marine sediments contaminated with organic compounds and metals. After the chemo-physical characterization of the study materials, two mix designs were prepared in a rotary plate granulator by adding two industrial by-products as geopolymer precursors, coal fly ash (CFA) and Blast Furnace Slag (BFS), but also alkaline activation solutions, water, and a fluidizer. The results indicated that sediments treated with mix 1 (i.e., with a higher percentage of water and fluidifier) represent the optimal solution in terms of metal leachability. The metal leachability was strictly influenced by aggregates' porosity, density, and microstructure. The technical performance (such as the aggregate impact value > 30%) suggested the use of granules as lightweight aggregates for pavement construction. The results indicated that cold granulation represents a sustainable solution to recycling contaminated marine sediments, CFA, and BFS into lightweight artificial aggregates.

4.
Materials (Basel) ; 15(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35683253

ABSTRACT

Waste represents a huge reserve of resources that, after appropriate management, can guarantee a sustainable and continuous supply of materials and energy over the years [...].

5.
Heliyon ; 8(5): e09551, 2022 May.
Article in English | MEDLINE | ID: mdl-35663747

ABSTRACT

In this work, the development, analytical characterization and bioactivity of zeolite-thymol composites, obtained using wet, semi-dry and dry processes, were carried out in order to obtain sustainable and powerful antimicrobial additives. FT-IR, XRD, DSC, TGA, SEM and B.E.T. analyses were carried out to gain comprehensive information on the chemical-physical, thermal, and morphological features of the composites. GC-MS analyses allowed quantifying the active molecule loaded in the zeolite, released by the functionalized composites and its stability over time. Among the three procedures, the dry approach allowed to reach the highest thymol loading content and efficiency (49.8 ± 1.6% and 99.6 ± 1.2%, respectively), as well as the highest composite specific surface area value, feature which promises the best interaction between the surface of the composite and the bacterial population. Therefore, the bioactive surface of composites obtained by this solvent-free method was assayed for its antimicrobial activity against four microbial strains belonging to Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans species. The higher antimicrobial activity produced by the solvent-free composite in comparison with that of pure thymol, at the same thymol concentration, was ascribed to the large interfacial contact between the composite and the bacterial target. This feature, together with its enhanced storage stability, suggested that this composite could be employed as effective additives for the development of antimicrobial biointerfaces for food, home and personal care applications.

6.
Materials (Basel) ; 15(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35454421

ABSTRACT

The topic of sustainability of reinforced concrete structures is strictly related with their durability in aggressive environments. In particular, at equal environmental impact, the higher the durability of construction materials, the higher the sustainability. The present review deals with the possible strategies aimed at producing sustainable and durable reinforced concrete structures in different environments. It focuses on the design methodologies as well as the use of unconventional corrosion-resistant reinforcements, alternative binders to Portland cement, and innovative or traditional solutions for reinforced concrete protection and prevention against rebars corrosion such as corrosion inhibitors, coatings, self-healing techniques, and waterproofing aggregates. Analysis of the scientific literature highlights that there is no preferential way for the production of "green" concrete but that the sustainability of the building materials can only be achieved by implementing simultaneous multiple strategies aimed at reducing environmental impact and improving both durability and performances.

7.
Sci Total Environ ; 823: 153750, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35149060

ABSTRACT

Phosphate rocks are an irreplaceable resource to produce fertilizers, but their availability will not be enough to meet the increasing demands of agriculture for food production. At the same time, the accumulation of phosphorous discharged by municipal wastewater treatment plants (WWTPs) is one of the main causes of eutrophication. In a perspective of circular economy, WWTPs play a key role in phosphorous management. Indeed, phosphorus removal and recovery from WWTPs can both reduce the occurrence of eutrophication and contribute to meeting the demand for phosphorus-based fertilizers. Phosphorous removal and recovery are interconnected phases in WWTP with the former generally involved in the mainstream treatment, while the latter on the side streams. Indeed, by reducing phosphorus concentration in the WWTP side streams, a further improvement of the overall phosphorus removal from the WWTP influent can be obtained. Many studies and patents have been recently focused on treatments and processes aimed at the removal and recovery of phosphorous from wastewater and sewage sludge. Notably, new advances on biological and material sciences are constantly put at the service of conventional or unconventional wastewater treatments to increase the phosphorous removal efficiency and/or reduce the treatment costs. Similarly, many studies have been devoted to the development of processes aimed at the recovery of phosphorus from wastewaters and sludge to produce fertilizers, and a wide range of recovery percentages is reported as a function of the different technologies applied (from 10-25% up to 70-90% of the phosphorous in the WWTP influent). In view of forthcoming and inevitable regulations on phosphorous removal and recovery from WWTP streams, this review summarizes the main recent advances in this field to provide the scientific and technical community with an updated and useful tool for choosing the best strategy to adopt during the design or upgrading of WWTPs.


Subject(s)
Wastewater , Water Purification , Phosphorus , Sewage , Waste Disposal, Fluid
8.
Materials (Basel) ; 15(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35057171

ABSTRACT

Environmentally sustainable cement mortars containing wheat straw (Southern Italy, Apulia region) of different length and dosage and perlite beads as aggregates were prepared and characterised by rheological, thermal, acoustic, mechanical, optical and microstructural tests. A complete replacement of the conventional sand was carried out. Composites with bare straw (S), perlite (P), and with a mixture of inorganic and organic aggregates (P/S), were characterised and compared with the properties of conventional sand mortar. It was observed that the straw fresh composites showed a decrease in workability with fibre length decrease and with increase in straw volume, while the conglomerates with bare perlite, and with the aggregate mixture, showed similar consistency to the control. The thermal insulation of the straw mortars was extremely high compared to the sand reference (85-90%), as was the acoustic absorption, especially in the 500-1000 Hz range. These results were attributed to the high porosity of these composites and showed enhancement of these properties with decrease in straw length and increase in straw volume. The bare perlite sample showed the lowest thermal insulation and acoustic absorption, being less porous than the former composites, while intermediate values were obtained with the P/S samples. The mechanical performance of the straw composites increased with length of the fibres and decreased with fibre dosage. The addition of expanded perlite to the mixture produced mortars with an improvement in mechanical strength and negligible modification of thermal properties. Straw mortars showed discrete cracks after failure, without separation of the two parts of the specimens, due to the aggregate tensile strength which influenced the impact compression tests. Preliminary observations of the stability of the mortars showed that, more than one year from preparation, the conglomerates did not show detectable signs of degradation.

9.
Toxics ; 9(11)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34822703

ABSTRACT

This work presents the results of experimental tests to evaluate the effects of prolonged contamination by Cr on Moso Bamboo (MB) (Phyllostachys pubescens) and the adaptability of the MB to the Mediterranean climate. A preliminary test on the MB was developed in the laboratory, simulating irrigation under Mediterranean conditions (600 mm per year) and tropical conditions (1800 mm per year), to evaluate the rate of growth and the MB's capability for Cr phytoextraction from contaminated soil. The tolerance of MB to Cr was also performed showing a good response of the plant to 100 mg Cr/L solution, utilized for irrigation of the pots. The results show that the rate of MB's removal of Cr from soil ranged from 49.2% to 61.7% as a function of the soil degree of contamination, which varied from approx. 100 mg/kg to 300 mg/kg. The distribution of Cr in the various sections of the bamboo revealed that the greater percentage was present in rhizomes: 42%, equal to 114 mg Cr for 600 mm per year, and 50%, equal to 412 mg Cr for 1800 mm per year. A noteworthy diffusion of the metal towards the outermost parts of the plant was shown. The values of Cr retained in the stems and leaves of MB tissues were quite high and varied from 1100 mg/kg to 1700 mg/kg dry weight.

10.
Sports Med Open ; 7(1): 49, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34279765

ABSTRACT

High-intensity interval training (HIIT) is an increasingly popular form of aerobic exercise which includes bouts of high-intensity exercise interspersed with periods of rest. The health benefits, risks, and optimal design of HIIT are still unclear. Further, most research on HIIT has been done in young and middle-aged adults, and as such, the tolerability and effects in senior populations are less well-known. The purpose of this scoping review was to characterize HIIT research that has been done in older adults including protocols, feasibility, and safety and to identify gaps in the current knowledge. Five databases were searched with variations of the terms, "high-intensity interval training" and "older adults" for experimental or quasi-experimental studies published in or after 2009. Studies were included if they had a treatment group with a mean age of 65 years or older who did HIIT, exclusively. Of 4644 papers identified, 69 met the inclusion criteria. The average duration of training was 7.9 (7.0) weeks (mean [SD]) and protocols ranged widely. The average sample size was 47.0 (65.2) subjects (mean [SD]). Healthy populations were the most studied group (n = 30), followed by subjects with cardiovascular (n = 12) or cardiac disease (n = 9), metabolic dysfunction (n = 8), and others (n = 10). The most common primary outcomes included changes in cardiorespiratory fitness (such as VO2peak) as well as feasibility and safety of the protocols as measured by the number of participant dropouts, adverse events, and compliance rate. HIIT protocols were diverse but were generally well-tolerated and may confer many health advantages to older adults. Larger studies and more research in clinical populations most representative of older adults are needed to further evaluate the clinical effects of HIIT in these groups.

11.
Front Aging Neurosci ; 13: 643809, 2021.
Article in English | MEDLINE | ID: mdl-33935686

ABSTRACT

Background: The impact of exercise on cognition in older adults with hypertension and subjective cognitive decline (SCD) is unclear. Objectives: We determined the influence of high-intensity interval training (HIIT) combined with mind-motor training on cognition and systolic blood pressure (BP) in older adults with hypertension and SCD. Methods: We randomized 128 community-dwelling older adults [age mean (SD): 71.1 (6.7), 47.7% females] with history of hypertension and SCD to either HIIT or a moderate-intensity continuous training (MCT) group. Both groups received 15 min of mind-motor training followed by 45 min of either HIIT or MCT. Participants exercised in total 60 min/day, 3 days/week for 6 months. We assessed changes in global cognitive functioning (GCF), Trail-Making Test (TMT), systolic and diastolic BP, and cardiorespiratory fitness. Results: Participants in both groups improved diastolic BP [F (1, 87.32) = 4.392, p = 0.039], with greatest effect within the HIIT group [estimated mean change (95% CI): -2.64 mmHg, (-4.79 to -0.48), p = 0.017], but no between-group differences were noted (p = 0.17). Both groups also improved cardiorespiratory fitness [F (1, 69) = 34.795, p < 0.001], and TMT A [F (1, 81.51) = 26.871, p < 0.001] and B [F (1, 79.49) = 23.107, p < 0.001]. There were, however, no within- or between-group differences in GCF and systolic BP at follow-up. Conclusion: Despite improvements in cardiorespiratory fitness, exercise of high- or moderate-intensity, combined with mind-motor training, did not improve GCF or systolic BP in individuals with hypertension and SCD. Clinical Trial Registration: ClinicalTrials.gov (NCT03545958).

12.
Materials (Basel) ; 14(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466425

ABSTRACT

Lightweight cement mortars containing end-of-life tire rubber (TR) as aggregate were prepared and characterized by rheological, thermal, mechanical, microstructural, and wetting tests. The mixtures were obtained after total replacement of the conventional sand aggregate with untreated TR with different grain sizes (0-2 mm and 2-4 mm) and distributions (25%, 32%, and 40% by weight). The mortars showed lower thermal conductivities (≈90%) with respect to the sand reference due to the differences in the conductivities of the two phases associated with the low density of the aggregates and, to a minor extent, to the lack of adhesion of tire to the cement paste (evidenced by microstructural detection). In this respect, a decrease of the thermal conductivities was observed with the increase of the TR weight percentage together with a decrease of fluidity of the fresh mixture and a decrease of the mechanical strengths. The addition of expanded perlite (P, 0-1 mm grain size) to the mixture allowed us to obtain mortars with an improvement of the mechanical strengths and negligible modification of the thermal properties. Moreover, in this case, a decrease of the thermal conductivities was observed with the increase of the P/TR dosage together with a decrease of fluidity and of the mechanical strengths. TR mortars showed discrete cracks after failure without separation of the two parts of the specimens, and similar results were observed in the case of the perlite/TR samples thanks to the rubber particles bridging the crack faces. The super-elastic properties of the specimens were also observed in the impact compression tests in which the best performances of the tire and P/TR composites were evidenced by a deep groove before complete failure. Moreover, these mortars showed very low water penetration through the surface and also through the bulk of the samples thanks to the hydrophobic nature of the end-of-life aggregate, which makes these environmentally sustainable materials suitable for indoor and outdoor elements.

13.
Materials (Basel) ; 13(11)2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32516878

ABSTRACT

The recycling and reuse of solid wastes can be considered important challenges for civil and environmental applications in the frame of a more sustainable model of development and the consumption of new resources and energy [...].

14.
Materials (Basel) ; 13(4)2020 Feb 22.
Article in English | MEDLINE | ID: mdl-32098376

ABSTRACT

In the present work the rheological, thermo-mechanical, microstructural, and wetting characteristics of cement mortars with recycled expanded polystyrene (EPS) were analyzed. The samples were prepared after partial/total replacement of the conventional sand aggregate with EPS having different grain size and size distribution. Lightness and thermal insulation were relevant features for all the bare EPS composites, despite the mechanical strengths. Specifically, EPS based mortars were characterized by higher thermal insulation with respect to the sand reference due to the lower specific mass of the specimens mainly associated with the low density of the aggregates and also to the spaces at the EPS/cement paste interfaces. Interesting results in terms of low thermal conductivity and high mechanical resistances were obtained in the case of sand-EPS mixtures although characterized by only 50% in volume of the organic aggregate. Moreover, sand-based mortars showed hydrophilicity (low WCA) and high water penetration, whereas the presence of EPS in the cement composites led to a reduction of the absorption of water especially on the bulk of the composites. Specifically, mortars with EPS in the 2-4 mm and 4-6 mm bead size range showed the best results in term of hydrophobicity (high WCA) and no water penetration in the inner surface, due to low surface energy of the organic aggregate together with a good particle distribution. This was indicative of cohesion between the ligand and the polystyrene as observed in the microstructural detections. Such a property is likely to be correlated to the observed good workability of this type of mortar and to its low tendency to segregation compared to the other EPS containing specimens. These lightweight thermo-insulating composites can be considered environmentally sustainable materials because they are prepared with no pre-treated secondary raw materials and can be used for indoor applications.

15.
Biomolecules ; 9(10)2019 10 05.
Article in English | MEDLINE | ID: mdl-31590344

ABSTRACT

This paper reported the first example on the use of chitosan films, without further modification, to remove and recover, through bio-sorption processes, the emerging pollutant Diclofenac from water. The latter was adopted as a model, among non-steroidal anti-inflammatory drugs, by obtaining a maximum adsorption capacity, qmax, on chitosan of about 10 mg/g, under the applied experimental conditions of work. The literature gap about the use of chitosan films, which was already used for dyes and heavy metals removal, to adsorb emerging pollutants from water was covered, claiming the wide range application of chitosan films to remove a different class of pollutants. Several parameters affecting the Diclofenac adsorption process, such as the pH and ionic strength of solutions containing Diclofenac, the amount of the bio-sorbent and pollutant, and the temperature values, were investigated. The kinetics and the adsorption isotherms, along with the thermodynamic parameters (ΔG°, ΔH°, and ΔS°) were also evaluated. The process occurred very efficiently, and Chitosan/Diclofenac amounts dependent, remove about the 90% of the pollutant, in 2 h, from the tested solutions, through electrostatic interaction involving the carboxylic moiety of Diclofenac and Chitosan amino groups. This finding was confirmed by the pH and salt effects on the bio-sorption process, including swelling measurements of Chitosan films and by FTIR-ATR analysis. In detail, the maximum adsorption was observed at pH 5, when pollutant and Chitosan were negatively and positively charged, respectively. By reducing or increasing the pH around this value, a reduced affinity was observed. Accordingly, the presence of salts retarded the Diclofenac removal screening its charges, which hinders the interaction with Chitosan. The sorption was spontaneous (ΔG° < 0) and endothermic (ΔH° > 0) following the pseudo-second order kinetic model. The process was Diclofenac and Chitosan amount dependent. In addition, the Freundlich and Temkin isotherms well described the process, which showed the heterogeneous character of the process. Experiments of the complete desorption were also performed by using NaCl solutions 0.25 M (like sea water salt concentration) proposing the reuse of the pollutant and the recycling of the bio-sorbent lowering the associated costs. The versatility of the adsorbent was reported by exploring the possibility to induce the Diclofenac light-induced degradation after the adsorption and by-products adsorption onto chitosan films. To emphasize the chitosan capacity of treating water, the removal of another pollutant such as Ketoprofen and the mixture of Diclofenac and Ketoprofen were investigated. In this way, a green and eco-friendly production-pollution prevention technology for removing emerging pollutants from water was presented, which reduced the overall environmental impact. This illustrated experiments both in static and dynamic conditions for potential industrial applications.


Subject(s)
Chitosan/chemistry , Diclofenac/analysis , Ketoprofen/analysis , Wastewater/chemistry , Adsorption , Hydrogen-Ion Concentration , Industrial Waste , Spectroscopy, Fourier Transform Infrared , Water Purification
16.
Sci Total Environ ; 693: 133620, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31635003

ABSTRACT

This paper focuses on the removal of tetracycline from polluted water by chitosan-olive pomace adsorbing films. More specifically, both raw olive solid wastes (olive pomace) and the olive solid wastes/chitosan composite were compared and used for this purpose. Adsorption capacities values of 16 mg × g-1 and 1.6 mg × g-1 were obtained for the two adsorbents respectively. However, chitosan/olive pomace is proposed as suitable for environmental applications avoiding the dispersion of the pomace blocked inside the chitosan film. To detail the adsorption process, the effect of several experimental parameters such as the pH values, ionic strength, amount of adsorbent and pollutant and temperature values was investigated. The results showed that the adsorption process improved increasing the pH values, with a maximum at pH 8, and it was negatively affected by the presence of salts that retarded the adsorption. Indeed, the desorption of tetracycline was obtained in a MgCl2 2 M solution. So, a low-cost and cleaner approach, fundamental for the pollutant recovery and for an adsorbent safe reuse, for several cycles of adsorption/desorption, transforming a waste in resource is presented. The kinetics, isotherms models of adsorption and the thermodynamic parameters (ΔG°, ΔH° and ΔS°) were also evaluated observing that the physisorption of the pollutant occurred with and an endothermic character (ΔH°â€¯> 0) with ΔG°â€¯< 0 and ΔS°â€¯> 0. The use of Advanced Oxidation Processes was proposed as possible alternative to the tetracycline recovery, obtaining its degradation after the desorption. With the present paper, the alternative reuse of olive pomace is reported avoiding its disposal in the environment claiming its potential in the removal/recover of emerging contaminants from water.


Subject(s)
Tetracycline/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Adsorption , Chitosan , Industrial Waste , Kinetics , Olea , Tetracycline/analysis , Thermodynamics , Water Pollutants, Chemical/analysis , Water Pollution , Water Purification/methods
17.
Materials (Basel) ; 12(20)2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31658637

ABSTRACT

In this paper, environmentally sustainable cement mortars were prepared with end-of-life tyre rubber (TR) and recycled waste porous glass (PG) as aggregates in order to obtain lightweight products characterized by renewable and not-pretreated materials specifically for indoor applications. The secondary raw materials were added as partial and/or total replacement of the conventional sand aggregate. The resulting lightweight specimens were characterized by rheological, mechanical, thermal, microstructural and wettability tests. Fine tyre rubber aggregates affected the cohesiveness of the composites, as opposite to coarse tyre rubber and porous glass. The flexural and the compressive strengths of the porous glass samples were higher than the tyre rubber samples because of the higher stiffness and good adhesion of the glass to the cement paste as observed by microstructural observations. On the contrary, an unfavorable adhesion of the tyre aggregates to the cement paste was observed, together with discrete cracks after failure without separation of the two parts of the specimens. The latter result can explain the best results obtained by tyre rubber mortars in the case of impact compression tests where the super-elastic properties of the elastomeric material were evidenced by a deep groove before complete failure. Moreover, the thermal conductivity decrease of the lightweight porous TR and PG composites was in the range of ~80-90% with respect to the sand-based samples, which suggests that they can be used as plasters and masonries, and, in the case of tyre rubber specimens, outside applications are not excluded as observed from the wettability tests.

18.
Brain Res ; 1712: 197-206, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30753817

ABSTRACT

Ten minutes of aerobic or resistance training can 'boost' executive function in older adults. Here, we examined whether the magnitude of the exercise benefit is influenced by exercise intensity. Older adults (N = 17: mean age = 73 years) completed a volitional test to exhaustion (VO2peak) via treadmill to determine participant-specific moderate (80% of lactate threshold (LT)), heavy (15% of the difference between LT and VO2peak) and very-heavy (50% of the difference between LT and VO2peak) exercise intensities. Subsequently, in separate sessions all participants completed 10-min constant load single-bouts of exercise at each intensity. Pre- and post-exercise executive function were examined via the antisaccade task. Antisaccades require a saccade mirror-symmetrical to a target and extensive evidence has shown that antisaccades are supported via frontoparietal networks that demonstrate task-dependent changes following single-bout and chronic exercise. We also included a non-executive task (saccade to veridical target location; i.e., prosaccade) to determine whether a putative post-exercise benefit is specific to executive-related oculomotor control. Results showed that VO2 and psychological ratings of perceived exertion concurrently increased with increasing exercise intensity. As well, antisaccade reaction times showed a 24 ms (i.e., 8%) reduction from pre- to post-exercise assessments (p < .001), whereas prosaccade values did not (p = .19). Most notably, the post-exercise change in antisaccade RTs did not reliably vary with exercise intensity. Further, for each exercise intensity participants' cardiorespiratory fitness level was unrelated to the magnitude of the post-exercise executive benefit (ps > .13). Accordingly, an exercise duration as brief as 10-min provides a selective benefit to executive function in older adults across the continuum of moderate to very-heavy intensities.


Subject(s)
Executive Function/physiology , Exercise/physiology , Aged , Aged, 80 and over , Exercise Test/methods , Eye Movements/physiology , Female , Humans , Male , Oculomotor Muscles/physiology , Reaction Time/physiology , Saccades/physiology
19.
J Hazard Mater ; 364: 256-263, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30368063

ABSTRACT

In this paper, the treatment of asbestos-cement waste (ACW) has been attempted by a dark fermentation (DF) pre-treatment followed by hydrothermal and anaerobic digestion (AD) treatments. During DF, glucose, employed as a biodegradable substrate, was mainly converted to H2-rich biogas and organic acids (OAs). The latter caused the dissolution of the cement matrix and the partial structural collapse of chrysotile (white asbestos). To complete the chrysotile degradation, hydrothermal treatment of the DF effluents was performed under varying operating conditions (temperature, acid type, and load). After the addition of 5.0 g/L sulfuric acid, a temperature decrease, from 80 °C to 40 °C, slowed down the treatment. Similarly, at 100 °C, a decrease of sulfuric, lactic or malic acid load from 5.0 g/L to 1.0 g/L slowed down the process, regardless of acid type. The acid type did not affect the hydrothermal treatment but influenced the AD of the hydrothermal effluents. Indeed, when malic acid was used, the AD of the hydrothermally treated effluents resulted in the highest production of methane. At the end of the AD treatment, some magnesium ions derived from ACW dissolution participated in the crystallization of struvite, an ecofriendly phosphorous-based fertilizer.


Subject(s)
Asbestos, Serpentine , Bioreactors , Construction Materials , Industrial Waste , Waste Management/methods , Anaerobiosis , Asbestos, Serpentine/chemistry , Carboxylic Acids/chemistry , Fermentation , Fertilizers , Hot Temperature , Phosphorus , Sewage
20.
Neuropsychologia ; 120: 65-74, 2018 11.
Article in English | MEDLINE | ID: mdl-30321613

ABSTRACT

A single-bout of aerobic or resistance training facilitates executive function and is a benefit thought to be specific to exercise durations greater than 20 min. We sought to determine whether an executive benefit is observed for a session as brief as 10-min, and whether distinct and participant-specific exercise intensities - and associated metabolic costs - influence the magnitude of the benefit. Participants completed exercise sessions - via cycle ergometer - at moderate (80% of lactate threshold [LT]), heavy (15% of the difference between LT and VO2 peak) and very-heavy (50% of the difference between LT and VO2 peak) intensities determined via an incremental ramp test to volitional exhaustion. Pre- and post-exercise executive function was examined via antisaccades - an executive task requiring a saccade mirror-symmetrical to a visual stimulus. Antisaccades are an ideal tool for examining post-exercise executive changes due to the resolution of eye-tracking and because the task is mediated via the same frontoparietal networks as modified following single-bout and chronic exercise. A non-executive prosaccade task (i.e., saccade to veridical target location) was also completed to determine if the putative post-exercise benefit was specific to executive function. Results showed a 20 ms reduction in pre- to post-exercise antisaccade RTs (p < .02) and was independent of exercise intensity, whereas no such change was observed for prosaccades (p = .14). Furthermore, the antisaccade benefit occurred without concomitant changes in directional errors or endpoint accuracy; that is, participants did not decrease their post-exercise RTs at the cost of increased planning and execution errors (ps > 0.34). Accordingly, we propose that an exercise duration as brief as 10-min provides a reliable benefit to executive function and is an effect observed across the continuum of moderate to very-heavy intensities.


Subject(s)
Executive Function/physiology , Exercise/physiology , Exercise/psychology , Adult , Eye Movement Measurements , Eye Movements/physiology , Female , Humans , Male , Reaction Time/physiology , Visual Perception/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...