Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34282759

ABSTRACT

This paper focuses on the binary classification of the emotion of fear, based on the physiological data and subjective responses stored in the DEAP dataset. We performed a mapping between the discrete and dimensional emotional information considering the participants' ratings and extracted a substantial set of 40 types of features from the physiological data, which represented the input to various machine learning algorithms-Decision Trees, k-Nearest Neighbors, Support Vector Machine and artificial networks-accompanied by dimensionality reduction, feature selection and the tuning of the most relevant hyperparameters, boosting classification accuracy. The methodology we approached included tackling different situations, such as resolving the problem of having an imbalanced dataset through data augmentation, reducing overfitting, computing various metrics in order to obtain the most reliable classification scores and applying the Local Interpretable Model-Agnostic Explanations method for interpretation and for explaining predictions in a human-understandable manner. The results show that fear can be predicted very well (accuracies ranging from 91.7% using Gradient Boosting Trees to 93.5% using dimensionality reduction and Support Vector Machine) by extracting the most relevant features from the physiological data and by searching for the best parameters which maximize the machine learning algorithms' classification scores.


Subject(s)
Machine Learning , Support Vector Machine , Algorithms , Cluster Analysis , Fear , Humans
2.
Sensors (Basel) ; 20(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33322014

ABSTRACT

This paper proposes a protocol for the acquisition and processing of biophysical signals in virtual reality applications, particularly in phobia therapy experiments. This protocol aims to ensure that the measurement and processing phases are performed effectively, to obtain clean data that can be used to estimate the users' anxiety levels. The protocol has been designed after analyzing the experimental data of seven subjects who have been exposed to heights in a virtual reality environment. The subjects' level of anxiety has been estimated based on the real-time evaluation of a nonlinear function that has as parameters various features extracted from the biophysical signals. The highest classification accuracy was obtained using a combination of seven heart rate and electrodermal activity features in the time domain and frequency domain.


Subject(s)
Phobic Disorders , Virtual Reality , Anxiety/diagnosis , Anxiety Disorders/diagnosis , Heart Rate , Humans , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...