Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 18(9): e1010386, 2022 09.
Article in English | MEDLINE | ID: mdl-36166469

ABSTRACT

Adenosine bases of RNA can be transiently modified by the deposition of a methyl-group to form N6-methyladenosine (m6A). This adenosine-methylation is an ancient process and the enzymes involved are evolutionary highly conserved. A genetic screen designed to identify suppressors of late flowering transgenic Arabidopsis plants overexpressing the miP1a microProtein yielded a new allele of the FIONA1 (FIO1) m6A-methyltransferase. To characterize the early flowering phenotype of fio1 mutant plants we employed an integrative approach of mRNA-seq, Nanopore direct RNA-sequencing and meRIP-seq to identify differentially expressed transcripts as well as differentially methylated RNAs. We provide evidence that FIO1 is the elusive methyltransferase responsible for the 3'-end methylation of the FLOWERING LOCUS C (FLC) transcript. Furthermore, our genetic and biochemical data suggest that 3'-methylation stabilizes FLC mRNAs and non-methylated FLC is a target for rapid degradation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , 3' Untranslated Regions/genetics , Adenosine/genetics , Adenosine/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Histones/genetics , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Methylation , Methyltransferases/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...