Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Environ Res ; 243: 117792, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38048868

ABSTRACT

Extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales are a major public health problem, and wastewater from municipal wastewater treatment plants (WWTPs) is a potential means of spreading them into the environment and community. Our objective was to isolate ESBL-producing E. coli and other Enterobacterales from wastewater after treatment at Croatia's largest WWTP and to characterize these isolates by phenotypic and genotypic testing. Of the 200 bacterial isolates, 140 were confirmed as Enterobacterales by MALDI-TOF MS, with Escherichia coli and Klebsiella spp. predominating (69% and 7%, respectively). All 140 enterobacterial isolates were multidrug-resistant (MDR) and produced ESBLs. The most prevalent ESBL genes among the isolates tested were blaCTX-M-15 (60%), blaTEM-116 (44%), and blaCTX-M-3 (13%). Most isolates (94%) carried more than one ESBL gene in addition to blaCTX-M. Genes encoding plasmid-mediated AmpC, most notably blaEBC, were detected in 22% of isolates, whereas genes encoding carbapenemases (blaOXA-48, blaNDM-1, blaVIM-1) were less represented (10%). In E. coli, 9 different sequence types (ST) were found, with the emerging high-risk clones ST361 (serotype A-O9:H30) and pandemic ST131 (serotype B2-O25:H4) predominating (32% and 15%, respectively). Other high-risk E. coli clones included ST405 (3%), ST410 (3%), CC10 (3%), ST10 (3%), and ST38 (2%), and emerging clones included ST1193 (2%) and ST635 (2%). Whole-genome sequencing of three representative E. coli from two dominant clone groups (ST361 and ST131) and one extensively drug-resistant K. oxytoca revealed the presence of multiple plasmids and resistance genes to several other antibiotic classes, as well as association of the blaCTX-M-15 gene with transposons and insertion sequences. Our findings indicate that treated municipal wastewater contributes to the spread of emerging and pandemic MDR E. coli clones and other enterobacterial strains of clinical importance into the aquatic environment, with the risk of reintroduction into humans.


Subject(s)
Escherichia coli , Wastewater , Humans , Escherichia coli/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents , Enterobacteriaceae/genetics , Microbial Sensitivity Tests
2.
Sci Total Environ ; 870: 161805, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36708818

ABSTRACT

The emergence of extended-spectrum ß-lactamase (ESBL)- and especially carbapenemases in Enterobacterales has led to limited therapeutic options. Therefore, it is critical to fully understand all potential routes of transmission, especially in high-risk sources such as hospital wastewater. This study aimed to quantify four enteric opportunistic pathogens (EOPs), total, ESBL- and carbapenem-resistant coliforms and their corresponding resistance genes (two ESBL and five carbapenemase genes) and to characterize enterobacterial isolates from hospital wastewater from two large hospitals in Zagreb over two seasons. Culturing revealed similar average levels of total and carbapenem-resistant coliforms (3.4 × 104 CFU/mL), and 10-fold lower levels of presumptive ESBL coliforms (3 × 103 CFU/mL). Real-time PCR revealed the highest E. coli levels among EOPs (105 cell equivalents/mL) and the highest levels of the blaKPC gene (up to 10-1 gene copies/16S copies) among all resistance genes examined. Of the 69 ESBL- and 90 carbapenemase-producing Enterobacterales (CPE) isolates from hospital wastewater, all were multidrug-resistant and most were identified as Escherichia coli, Citrobacter, Enterobacter, and Klebsiella. Among ESBL isolates, blaCTX-M-15 was the most prevalent ESBL gene, whereas in CPE isolates, blaKPC-2 and blaNDM-1 were the most frequently detected CP genes, followed by blaOXA-48. Molecular epidemiology using PFGE, MLST and whole-genome sequencing (WGS) revealed that clinically relevant variants such as E. coli ST131 (blaCTX-M-15/blaTEM-116) and ST541 (blaKPC-2), K. pneumoniae ST101 (blaOXA-48/blaNDM-1), and Enterobacter cloacae complex ST277 (blaKPC-2/blaNDM-1) were among the most frequently detected clone types. WGS also revealed a diverse range of resistance genes and plasmids in these and other isolates, as well as transposons and insertion sequences in the flanking regions of the blaCTX-M, blaOXA-48, and blaKPC-2 genes, suggesting the potential for mobilization. We conclude that hospital wastewater is a potential secondary reservoir of clinically important pathogens and resistance genes and therefore requires effective pretreatment before discharge to the municipal sewer system.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/pharmacology , Wastewater , Multilocus Sequence Typing , Croatia , Bacterial Proteins/genetics , beta-Lactamases/genetics , Klebsiella pneumoniae , Hospitals , Klebsiella/genetics , Klebsiella/metabolism , Enterobacter/genetics , Carbapenems/pharmacology , Microbial Sensitivity Tests
3.
J Hazard Mater ; 427: 128155, 2022 04 05.
Article in English | MEDLINE | ID: mdl-34991006

ABSTRACT

Extended-spectrum ß-lactamase (ESBL)- and carbapenemase-producing Enterobacterales are a critical global health problem and wastewater treatment plants (WWTPs) can promote their spread into the environment; yet their efficacy is not well characterized. Here, we have used conventional culturing to monitor coliform bacteria and quantitative PCR to monitor 2 ESBL and 5 carbapenemase (CP) genes and 4 enteric opportunistic pathogens (EOPs) in the influent and effluent of 7 Croatian WWTPs in two seasons. In general, levels of total, cefotaxime- and carbapenem-resistant coliforms were significantly reduced but not eliminated by conventional treatment in most WWTPs. Most WWTPs efficiently removed EOPs such as K. pneumoniae and A. baumannii, while E. coli and Enterococcus spp. were reduced but still present in relatively high concentrations in the effluent. ESBL genes (blaTEM and blaCTX-M-32) were only slightly reduced or enriched after treatment. CP genes, blaKPC-3, blaNDM and blaOXA-48-like, were sporadically detected, while blaIMP and blaVIM were frequently enriched during treatment and correlated with plant size, number or size of hospitals in the catchment area, and COD effluent concentration. Our results suggest that improvements in wastewater treatment technologies are needed to minimize the risk of environmental contamination with top priority EOPs and ARGs and the resulting public health.


Subject(s)
Wastewater , Water Purification , Anti-Bacterial Agents , Carbapenems/pharmacology , Cephalosporins , Croatia , Escherichia coli , Microbial Sensitivity Tests , Prevalence , beta-Lactamases/genetics
4.
Microbiol Spectr ; 9(2): e0038921, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34494878

ABSTRACT

Increasing evidence denotes the role of the microbiome in biological invasions, since it is known that microbes can affect the fitness of the host. Here, we demonstrate differences in the composition of an invader's microbiome along the invasion range, suggesting that its microbial communities may affect and be affected by range expansion. Using a 16S rRNA gene amplicon sequencing approach, we (i) analyzed the microbiomes of different tissues (exoskeleton, hemolymph, hepatopancreas, and intestine) of a successful freshwater invader, the signal crayfish, (ii) compared them to the surrounding water and sediment, and (iii) explored their changes along the invasion range. Exoskeletal, hepatopancreatic, and intestinal microbiomes varied between invasion core and invasion front populations. This indicates that they may be partly determined by population density, which was higher in the invasion core than in the invasion front. The highly diverse microbiome of exoskeletal biofilm was partly shaped by the environment (due to the similarity with the sediment microbiome) and partly by intrinsic crayfish parameters (due to the high proportion of exoskeleton-unique amplicon sequence variants [ASVs]), including the differences in invasion core and front population structure. Hemolymph had the most distinct microbiome compared to other tissues and differed between upstream (rural) and downstream (urban) river sections, indicating that its microbiome is potentially more driven by the effects of the abiotic environment. Our findings offer an insight into microbiome changes during dispersal of a successful invader and present a baseline for assessment of their contribution to an invader's overall health and its further invasion success. IMPORTANCE Invasive species are among the major drivers of biodiversity loss and impairment of ecosystem services worldwide, but our understanding of their invasion success and dynamics still has many gaps. For instance, although it is known that host-associated microbial communities may significantly affect an individual's health and fitness, the current studies on invasive species are mainly focused on pathogenic microbes, while the effects of the remaining majority of microbial communities on the invasion process are almost completely unexplored. We have analyzed the microbiome of one of the most successful crayfish invaders in Europe, the signal crayfish, and explored its changes along the signal crayfish invasion range in the Korana River, Croatia. Our study sets the perspective for future research required to assess the contribution of these changes to an individual's overall health status and resilience of dispersing populations and their impact on invasion success.


Subject(s)
Animal Shells/microbiology , Astacoidea/microbiology , Geologic Sediments/microbiology , Microbiota/genetics , Animals , Biofilms/growth & development , Croatia , DNA, Bacterial/genetics , Europe , Hemolymph/microbiology , Hepatopancreas/microbiology , Intestines/microbiology , Introduced Species , RNA, Ribosomal, 16S/genetics
5.
J Fish Dis ; 44(3): 221-247, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33345337

ABSTRACT

Despite important ecological role and growing commercial value of freshwater crayfish, their diseases are underresearched and many studies examining potential crayfish pathogens do not thoroughly address their epizootiology, pathology or biology. This study reviews over 100 publications on potentially pathogenic viruses, bacteria, fungi and fungal-like microorganisms reported in crayfish and systematizes them based on whether pathogenicity has been observed in an analysed species. Conclusions on pathogenicity were based on successful execution of infectivity trials. For 40.6% of examined studies, microbes were successfully systematized, while for more than a half (59.4%) no conclusion on pathogenicity could be made. Fungi and fungal-like microorganisms were the most studied group of microbes with the highest number of analysed hosts, followed by bacteria and viruses. Our analysis demonstrated the need for: (a) inclusion of higher number of potential host species in the case of viruses, (b) research of bacterial effects in tissues other than haemolymph, and (c) more research into potential fungal and fungal-like pathogens other than Aphanomyces astaci. We highlight the encountered methodological challenges and biases and call for a broad but standardized framework for execution of infectivity trials that would enable systematic data acquisition on interactions between microbes and the host.


Subject(s)
Astacoidea/microbiology , Astacoidea/virology , Animals , Bacteria/pathogenicity , Fungi/pathogenicity , Viruses/pathogenicity
6.
Sci Total Environ ; 749: 142357, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33370905

ABSTRACT

Environments polluted with excessively high levels of antibiotics released from manufacturing sites can act as a source of transferable antibiotic resistance (AR) genes to human commensal and pathogenic bacteria. The aim of this study was to evaluate AR of bacteria isolated from the Sava river sediments (Croatia) at the discharge site of effluents from azithromycin production compared to those from the upstream site and isolates collected in Croatian hospitals. A total of 228 environmental strains of azithromycin-resistant bacteria were isolated and identified, with 124 from the discharge site and 104 from the upstream site. In addition, a total of 90 clinical, azithromycin-resistant streptococcal and staphylococcal isolates obtained from the Croatian Reference Center for Antibiotic Resistance Surveillance were analyzed. PCR screening of isolates on 11 relevant macrolide-resistance genes (MRGs) showed that discharge isolates had greater detection frequencies for 4 gene targets (ermB, msrE, mphE and ermF) compared to upstream isolates. Among clinical isolates, the most frequently detected gene was ermB, followed by msrD, mefE and mefC. The discharge site demonstrated a greater abundance of isolates with co-occurrence of two different MRGs (predominantly msrE-mphE) than the upstream site, but a lower abundance than the clinical sources (most commonly msrD-mefE). The simultaneous presence of three or even four MRGs was specific for the discharge and clinical isolates, but not for the upstream isolates. When MRG results were sorted by gene mechanism, the ribosomal methylation (erm) and protection genes (msr) were the most frequently detected among both the discharge and the clinical isolates. Following sequencing, high nucleotide sequence similarity was observed between ermB in the discharge isolates and the clinical streptococcal isolates, suggesting a possible transfer of the ermB gene between bacteria of clinical and environmental origin. Our study highlights the importance of environmental bacterial populations as reservoirs for clinically relevant macrolide-resistance genes.


Subject(s)
Anti-Bacterial Agents , Macrolides , Anti-Bacterial Agents/pharmacology , Bacteria , Croatia , Drug Resistance, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Rivers
7.
Sci Total Environ ; 706: 136001, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31855637

ABSTRACT

Environmental discharges of very high (mg/L) antibiotic levels from pharmaceutical production contributed to the selection, spread and persistence of antibiotic resistance. However, the effects of less antibiotic-polluted effluents (µg/L) from drug-formulation on exposed aquatic microbial communities are still scarce. Here we analyzed formulation effluents and sediments from the receiving creek collected at the discharge site (DW0), upstream (UP) and 3000 m downstream of discharge (DW3000) during winter and summer season. Chemical analyses indicated the largest amounts of trimethoprim (up to 5.08 mg/kg) and azithromycin (up to 0.39 mg/kg) at DW0, but sulfonamides accumulated at DW3000 (total up to 1.17 mg/kg). Quantitative PCR revealed significantly increased relative abundance of various antibiotic resistance genes (ARGs) against ß-lactams, macrolides, sulfonamides, trimethoprim and tetracyclines in sediments from DW0, despite relatively high background levels of some ARGs already at UP site. However, only sulfonamide (sul2) and macrolide ARG subtypes (mphG and msrE) were still elevated at DW3000 compared to UP. Sequencing of 16S rRNA genes revealed pronounced changes in the sediment bacterial community composition from both DW sites compared to UP site, regardless of the season. Numerous taxa with increased relative abundance at DW0 decreased to background levels at DW3000, suggesting die-off or lack of transport of effluent-originating bacteria. In contrast, various taxa that were more abundant in sediments than in effluents increased in relative abundance at DW3000 but not at DW0, possibly due to selection imposed by high sulfonamide levels. Network analysis revealed strong correlation between some clinically relevant ARGs (e.g. blaGES, blaOXA, ermB, tet39, sul2) and taxa with elevated abundance at DW sites, and known to harbour opportunistic pathogens, such as Acinetobacter, Arcobacter, Aeromonas and Shewanella. Our results demonstrate the necessity for improved management of pharmaceutical and rural waste disposal for mitigating the increasing problems with antibiotic resistance.


Subject(s)
Drug Resistance, Microbial , Genes, Bacterial , Anti-Bacterial Agents , Bacteria , Geologic Sediments , RNA, Ribosomal, 16S , Wastewater
8.
J Invertebr Pathol ; 169: 107274, 2020 01.
Article in English | MEDLINE | ID: mdl-31682798

ABSTRACT

The pathogenic oomycete Aphanomyces astaci, transmitted mainly by invasive North American crayfish, causes the crayfish plague, a disease mostly lethal for native European crayfish. Due to its decimating effects on native crayfish populations in the last century, A. astaci has been listed among the 100 worst invasive species. Importantly, detecting the pathogen in endangered native crayfish populations before a disease outbreak would provide a starting point in the development of effective control measures. However, current A. astaci-detection protocols either rely on degradation-prone eDNA isolated from large volumes of water or, if focused on individual animals, include killing the crayfish. We developed a non-destructive method that detects A. astaci DNA in the microbial biofilm associated with the cuticle of individual crayfish, without the need for destructive sampling. Efficiency of the new method was confirmed by PCR and qPCR and the obtained results were congruent with the traditional destructive sampling method. Additionally, we demonstrated the applicability of the method for A. astaci monitoring in natural populations. We propose that the new method should be used in future monitoring of A. astaci presence in endangered European native crayfish individuals as an alternative to eDNA-based monitoring.


Subject(s)
Aphanomyces/isolation & purification , Astacoidea/parasitology , Conservation of Natural Resources/methods , Host-Parasite Interactions , Parasitology/methods , Animals , DNA, Protozoan/analysis , Introduced Species
9.
Syst Appl Microbiol ; 42(6): 126016, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31635887

ABSTRACT

Hypoxic and anoxic niches of meromictic lakes are important sites for studying the microbial ecology of conditions resembling ancient Earth. The expansion and increasing global distribution of such environments also means that information about them serves to understand future phenomena. In this study, a long-term chemical dataset (1996-2015) was explored together with seasonal (in 2015) information on the diversity and abundance of bacterial and archaeal communities residing in the chemocline, monimolimnion and surface sediment of the marine meromictic Rogoznica Lake. The results of quantitative PCR assays, and high-throughput sequencing, targeting 16S rRNA genes and transcripts, revealed a clear vertical structure of the microbial community with Gammaproteobacteria (Halochromatium) and cyanobacteria (Synechococcus spp.) dominating the chemocline, Deltaproteobacteria and Bacteroidetes dominating the monimolimnion, and significantly more abundant archaeal populations in the surface sediment, most of which affiliated to Nanoarchaeota. Seasonal changes in the community structure and abundance were not pronounced. Diversity in Rogoznica Lake was found to be high, presumably as a consequence of stable environmental conditions accompanied by high dissolved carbon and nutrient concentrations. Long-term data indicated that Rogoznica Lake exhibited climate changes that could alter its physico-chemical features and, consequently, induce structural and physiological changes within its microbial community.


Subject(s)
Biodiversity , Lakes/microbiology , Microbiota , Oxygen/metabolism , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Climate Change , Databases, Chemical , Ireland , Lakes/chemistry , Microbiota/genetics , Oxygen/analysis , RNA, Ribosomal, 16S/genetics , Seasons , Water Microbiology
10.
Sci Total Environ ; 687: 858-866, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31412489

ABSTRACT

The biodegradation of biorecalcitrant opioid drug tramadol (TRAM) was studied in a model biodegradation experiment performed with an enriched activated sludge culture pre-adapted to high concentration of TRAM (20 mg/L). TRAM and its transformation products (TPs) were determined by applying ultrahigh-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS), the sludge culture was characterized using a 16S rRNA gene amplicon sequencing, whereas ecotoxicological evaluation was performed based on determination of toxicity to freshwater algae. Tramadol removal was much faster (t1/2 = 1.3 days) and more efficient in glucose-containing mineral medium (cometabolic conditions) than in a medium without glucose. The elimination of the parent compound resulted in the formation of five TPs, two of which (TP 249 and TP 235) were identified as N-desmethyltramadol (N-DM TRAM) and N,N-didesmethyltramadol (N,N-diDM TRAM). The remaining 3 TPs (TP 277a-c) were isomeric compounds with an elemental composition of protonated molecules C16H24NO3 and a putative structure which involved oxidative modification of the dimethylamino group. Pronounced changes in the taxonomic composition of the activated sludge were observed during the enrichment, especially regarding an enhanced percentage of 8 genera (Bacillus, Mycobacterium, Enterobacter, Methylobacillus, Pedobacter, Xanthobacter, Leadbetterella and Kaistia), which might be related to the observed transformations. The removal of TRAM resulted in proportional reduction of algal toxicity, implying a positive result of the accomplished transformation processes.


Subject(s)
Biodegradation, Environmental , Tramadol/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Bacteria , Sewage , Water Microbiology
11.
Environ Int ; 123: 501-511, 2019 02.
Article in English | MEDLINE | ID: mdl-30622075

ABSTRACT

Effluents from antibiotic manufacturing may contain high concentrations of antibiotics, which are the main driving force behind the selection and spread of antibiotic resistance genes in the environment. However, our knowledge about the impact of such effluent discharges on the antibiotic resistome and bacterial communities is still limited. To gain insight into this impact, we collected effluents from an azithromycin-manufacturing industry discharge site as well as upstream and downstream sediments from the receiving Sava river during both winter and summer season. Chemical analyses of sediment and effluent samples indicated that the effluent discharge significantly increased the amount of macrolide antibiotics, heavy metals and nutrients in the receiving river sediments. Quantitative PCR revealed a significant increase of relative abundances of macrolide-resistance genes and class 1 integrons in effluent-impacted sediments. Amplicon sequencing of 16S rRNA genes showed spatial and seasonal bacterial community shifts in the receiving sediments. Redundancy analysis and Mantel test indicated that macrolides and copper together with nutrients significantly correlated with community shift close to the effluent discharge site. The number of taxa that were significantly increased in relative abundance at the discharge site decreased rapidly at the downstream sites, showing the resilience of the indigenous sediment bacterial community. Seasonal changes in the chemical properties of the sediment along with changes in effluent community composition could be responsible for sediment community shifts between winter and summer. Altogether, this study showed that the discharge of pharmaceutical effluents altered physicochemical characteristics and bacterial community of receiving river sediments, which contributed to the enrichment of macrolide-resistance genes and integrons.


Subject(s)
Azithromycin , Bacteria/drug effects , Drug Resistance, Bacterial/genetics , Rivers/microbiology , Water Pollution, Chemical/adverse effects , Drug Resistance, Microbial/genetics , Environmental Monitoring , Genes, Bacterial , Geologic Sediments/chemistry , Integrons , Metals, Heavy/analysis , Microbiota/drug effects , RNA, Ribosomal, 16S/genetics , Rivers/chemistry , Seasons , Wastewater/chemistry , Water Microbiology
12.
Chemosphere ; 214: 719-728, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30293025

ABSTRACT

The biotransformation study of difficult-to-degrade opioid analgesic methadone (MTHD) was performed by activated sludge culture adapted to high concentration of methadone (10 mg/L). The study included determination of elimination kinetics of the parent compound, taxonomic characterization of microbial culture, identification of biotransformation products (TPs) and assessment of ecotoxicological effects of biotransformation processes. The chemical analyses were performed by ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry, whereas the ecotoxicological assessment was made based on determinations of toxicity to freshwater algae. Changes of the adapted sludge culture during the experiment were followed using the 16S rRNA gene amplicon sequencing. Depending on the experimental conditions, the elimination efficiency of methadone (10 mg/L) varied from 9% to 93% with the corresponding half-lives from 11.4 days to 1.5 days. A significantly faster elimination (t1/2 from 1.5 days to 5.8 days) was achieved at cometabolic conditions, using glucose-containing media, as compared to the experiments with MTHD as a single organic carbon source (t1/2 = 11.4 days). Moreover, increased biotransformation rate following the additional supplementation of ammonia, revealed a possible importance of nitrogen availability for the transformation at cometabolic conditions. The elimination of parent compound was associated with the formation of 3 different TPs, two of which were identical to main human metabolites of MTHD, 2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) and 2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline (EMDP). EDDP represented over 90% of the total TP concentration at the end of experiment. The biodegradation of MTHD was associated with a pronounced drop in algal toxicity, confirming a rather positive ecotoxicological outcome of the achieved biotransformation processes.


Subject(s)
Biotransformation , Ecotoxicology , Methadone/metabolism , Sewage/chemistry , Toxicity Tests , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Analgesics, Opioid/chemistry , Analgesics, Opioid/metabolism , Analgesics, Opioid/toxicity , Humans , Kinetics , Methadone/chemistry , Methadone/toxicity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
13.
Mar Genomics ; 36: 3-11, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28595872

ABSTRACT

Adriatic, the northernmost part of the Mediterranean Sea, due its oligotrophy, topography, and hydrology dynamics, and complex circulation patterns, was suggested as an important study site for rapid climatology impacts. Its southern part is mainly oligotrophic and dominated by picophytoplankton, with cyanobacteria as main representatives. Diversity and distribution patterns of different Prochlorococcus ecotypes were investigated by molecular tools and flow cytometry during the winter convection event in the southern Adriatic (BIOTA winter cruise; February/March 2015). Phylogenetic diversity based on clone libraries of the 16S-23S ribosomal DNA ITS region, as well as flow cytometry (histograms of red fluorescence), indicated presence of 2 different Prochlorococcus in the Adriatic. HLI, as a typical clade for Mediterranean Sea, was likewise found to be dominant Prochlorococcus in the Adriatic, followed by less abundant LLI clade. In addition, Prochlorococcus were found to co-occur with diverse Synechococcus population (53% and 47% of obtained ITS sequences, respectively). Different Prochlorococcus ecotypes had similar patterns of vertical distribution, predominantly occupying upper 100m depth layer, but their distribution was clearly affected by the heterogeneity of hydrological conditions, nitrogen concentration and temperature along vertical and horizontal sampling points. Different studies pointed out that, as a consequence of climate changes, serious alteration of biological and ecological patterns are already taking place Therefore, understanding of the distribution and abundance of picophytoplankton in Adriatic, being still limited, is much needed baseline for predicting possible biogeochemical impact of future environmental changes.


Subject(s)
Ecotype , Prochlorococcus/physiology , Croatia , Mediterranean Sea , Prochlorococcus/classification , Prochlorococcus/genetics , Seasons , Seawater/microbiology
14.
Environ Sci Pollut Res Int ; 23(5): 4320-33, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26517995

ABSTRACT

The action mode of sulfonylurea herbicides is the inhibition of the acetohydroxyacid synthase (AHAS) required for the biosynthesis of amino acids valine and isoleucine in plants. However, this enzyme is also present in a range of non-targeted organisms, among which soil microorganisms are known for their pivotal role in ecosystem functioning. In order to assess microbial toxicity of sulfonylurea herbicide nicosulfuron (NS), a tiered microcosm (Tier I) to field (Tier II) experiment was designed. Soil bacteria harboring AHAS enzyme tolerant to the herbicide nicosulfuron were enumerated, isolated, taxonomically identified, and physiologically characterized. Results suggested that application of nicosulfuron drives the selection towards NS-tolerant bacteria, with increasing levels of exposure inducing an increase in their abundance and diversity in soil. Tolerance to nicosulfuron was shown to be widespread among the microbial community with various bacteria belonging to Firmicutes (Bacillus) and Actinobacteria (Arthrobacter) phyla representing most abundant and diverse clusters. While Arthrobacter bacterial population dominated community evolved under lower (Tier II) nicosulfuron selection pressure, it turns out that Bacillus dominated community evolved under higher (Tier I) nicosulfuron selection pressure. Different NS-tolerant bacteria likewise showed different levels of sensitivity to the nicosulfuron estimated by growth kinetics on nicosulfuron. As evident, Tier I exposure allowed selection of populations able to better cope with nicosulfuron. One could propose that sulfonylureas-tolerant bacterial community could constitute a useful bioindicator of exposure to these herbicides for assessing their ecotoxicity towards soil microorganisms.


Subject(s)
Actinobacteria/drug effects , Firmicutes/drug effects , Herbicides/toxicity , Pyridines/toxicity , Soil Microbiology , Soil Pollutants/toxicity , Sulfonylurea Compounds/toxicity , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Actinobacteria/enzymology , Actinobacteria/growth & development , Agriculture , Drug Resistance, Bacterial/genetics , Firmicutes/enzymology , Firmicutes/growth & development , Herbicides/analysis , Pyridines/analysis , Soil/chemistry , Soil Pollutants/analysis , Sulfonylurea Compounds/analysis
16.
Appl Microbiol Biotechnol ; 90(4): 1547-54, 2011 May.
Article in English | MEDLINE | ID: mdl-21468717

ABSTRACT

We evaluated the effects of variations in atrazine input on the evolution of a bacterial culture adapted to a low atrazine concentration. This initial culture (M3-K) was subjected to weekly subculturing in the presence of a high concentration of atrazine as the only N source (100 mg l(-1)). After four subculturing, M3-K evolved to a new bacterial culture (M3) which exhibited a significant increase in the extent of atrazine mineralization in comparison with the initial culture. Molecular analyses of M3-K and M3 cultures by cloning, restriction analysis, and sequencing of the 16S rRNA genes revealed significant differences in culture structure and composition. M3-K culture comprised mainly Actinobacteria (40%), ß-Proteobacteria (26%), and Bacteroidetes (16%). After exposure to a high atrazine concentration, the dominance of Actinobacteria decreased (14%), Bacteroidetes increased (27%), and ß-Proteobacteria were replaced by γ-Proteobacteria (32%). Quantitative PCR revealed that the abundance of atzB and atzC genes relative to total bacteria decreased by a factor of 3-4 following the increase in atrazine concentration, while the relative abundance of trzD increased significantly (≈400 times). Presented study shows that variations in atrazine input drive both functional and compositional shifts in the atrazine-degrading bacterial culture.


Subject(s)
Atrazine/metabolism , Bacteria/classification , Bacteria/metabolism , Pesticides/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Biodegradation, Environmental , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...