Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Osteoarthritis Cartilage ; 23(2): 308-18, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25464168

ABSTRACT

OBJECTIVE: Articular cartilage is a highly specialized tissue which forms the surfaces in synovial joints. Full-thickness cartilage defects caused by trauma or microfracture surgery heal via the formation of fibrotic tissue characterized by a high content of collagen I (COL I) and subsequent poor mechanical properties. The goal of this study is to investigate the molecular mechanisms underlying fibrosis after joint injury. DESIGN: Rat knee joint models were used to mimic cartilage defects after acute injury. Immunohistochemistry was performed to detect proteins related to fibrosis. Human fetal chondrocytes and bone marrow stromal cells (BMSCs) were used to study the influence of the lipid lysophosphatidic acid (LPA) on COL I synthesis. Quantitative PCR, ELISA and immunohistochemistry were performed to evaluate the production of COL I. Chemical inhibitors were used to block LPA signaling both in vitro and in vivo. RESULTS: After full-thickness cartilage injury in rat knee joints, stromal cells migrating to the injury expressed high levels of the LPA-producing enzyme autotaxin (ATX); intact articular cartilage in rat and humans expressed negligible levels of ATX despite expressing the LPA receptors LPAR1 and LPAR2. LPA-induced increases in COL I production by chondrocytes and BMSCs were mediated by the MAP kinase and PI3 Kinase signaling pathways. Inhibition of the ATX/LPA axis significantly reduced COL I-enriched fibrocartilage synthesis in full-thickness cartilage defects in rats in favor of the collagen II-enriched normal state. CONCLUSION: Taken together, these results identify an attractive target for intervention in reducing the progression of post-traumatic fibrosis and osteoarthritis.


Subject(s)
Cartilage, Articular/injuries , Cartilage, Articular/pathology , Collagen Type I/biosynthesis , Lysophospholipids/physiology , Stifle/injuries , Animals , Fibrosis/etiology , Humans , Male , Rats , Rats, Sprague-Dawley
3.
Bone Joint J ; 96-B(3): 291-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24589781

ABSTRACT

The ability of mesenchymal stem cells (MSCs) to differentiate in vitro into chondrocytes, osteocytes and myocytes holds great promise for tissue engineering. Skeletal defects are emerging as key targets for treatment using MSCs due to the high responsiveness of bone to interventions in animal models. Interest in MSCs has further expanded in recognition of their ability to release growth factors and to adjust immune responses. Despite their increasing application in clinical trials, the origin and role of MSCs in the development, repair and regeneration of organs have remained unclear. Until recently, MSCs could only be isolated in a process that requires culture in a laboratory; these cells were being used for tissue engineering without understanding their native location and function. MSCs isolated in this indirect way have been used in clinical trials and remain the reference standard cellular substrate for musculoskeletal engineering. The therapeutic use of autologous MSCs is currently limited by the need for ex vivo expansion and by heterogeneity within MSC preparations. The recent discovery that the walls of blood vessels harbour native precursors of MSCs has led to their prospective identification and isolation. MSCs may therefore now be purified from dispensable tissues such as lipo-aspirate and returned for clinical use in sufficient quantity, negating the requirement for ex vivo expansion and a second surgical procedure. In this annotation we provide an update on the recent developments in the understanding of the identity of MSCs within tissues and outline how this may affect their use in orthopaedic surgery in the future.


Subject(s)
Connective Tissue Cells/physiology , Mesenchymal Stem Cells/physiology , Orthopedics , Tissue Engineering/methods , Animals , Cell Culture Techniques , Cell Differentiation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...