Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neurophysiol ; 131(10): 2341-2348, 2020 10.
Article in English | MEDLINE | ID: mdl-32828036

ABSTRACT

OBJECTIVE: To study motor cortex plasticity after a period of training with a new prototype of bidirectional hand prosthesis in three left trans-radial amputees, correlating these changes with the modification of Phantom Limb Pain (PLP) in the same period. METHODS: Each subject underwent a brain motor mapping with Transcranial Magnetic Stimulation (TMS) and PLP evaluation with questionnaires during a six-month training with a prototype of bidirectional hand prosthesis. RESULTS: The baseline motor maps showed in all three amputees a smaller area of muscles representation of the amputated side compared to the intact limb. After training, there was a partial reversal of the baseline asymmetry. The two subjects affected by PLP experienced a statistically significant reduction of pain. CONCLUSIONS: Two apparently opposite findings, the invasion of the "deafferented" cortex by neighbouring areas and the "persistence" of neural structures after amputation, could vary according to different target used for measurement. Our results do not support a correlation between PLP and motor cortical changes. SIGNIFICANCE: The selection of the target and of the task is essential for studies investigating motor brain plasticity. This study boosts against a direct and unique role of motor cortical changes on PLP genesis.


Subject(s)
Amputation, Surgical , Evoked Potentials, Motor/physiology , Motor Cortex/physiopathology , Muscle, Skeletal/physiopathology , Neuronal Plasticity/physiology , Prostheses and Implants , Amputees , Brain Mapping , Female , Hand/physiopathology , Humans , Male , Middle Aged
2.
Sci Rep ; 9(1): 19258, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848384

ABSTRACT

Although peripheral nerve stimulation using intraneural electrodes has been shown to be an effective and reliable solution to restore sensory feedback after hand loss, there have been no reports on the characterization of multi-channel stimulation. A deeper understanding of how the simultaneous stimulation of multiple electrode channels affects the evoked sensations should help in improving the definition of encoding strategies for bidirectional prostheses. We characterized the sensations evoked by simultaneous stimulation of median and ulnar nerves (multi-channel configuration) in four transradial amputees who had been implanted with four TIMEs (Transverse Intrafascicular Multichannel Electrodes). The results were compared with the characterization of single-channel stimulation. The sensations were characterized in terms of location, extent, type, and intensity. Combining two or more single-channel configurations caused a linear combination of the sensation locations and types perceived with such single-channel stimulations. Interestingly, this was also true when two active sites from the same nerve were stimulated. When stimulating in multi-channel configuration, the charge needed from each electrode channel to evoke a sensation was significantly lower than the one needed in single-channel configuration (sensory facilitation). This result was also supported by electroencephalography (EEG) recordings during nerve stimulation. Somatosensory potentials evoked by multi-channel stimulation confirmed that sensations in the amputated hand were perceived by the subjects and that a perceptual sensory facilitation occurred. Our results should help the future development of more efficient bidirectional prostheses by providing guidelines for the development of more complex stimulation approaches to effectively restore multiple sensations at the same time.


Subject(s)
Amputees , Artificial Limbs , Electroencephalography , Prosthesis Design , Transcutaneous Electric Nerve Stimulation , Ulnar Nerve/physiopathology , Adult , Female , Humans , Male , Middle Aged
3.
Sci Rep ; 8(1): 16666, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30420739

ABSTRACT

Recent studies have shown that direct nerve stimulation can be used to provide sensory feedback to hand amputees. The intensity of the elicited sensations can be modulated using the amplitude or frequency of the injected stimuli. However, a comprehensive comparison of the effects of these two encoding strategies on the amputees' ability to control a prosthesis has not been performed. In this paper, we assessed the performance of two trans-radial amputees controlling a myoelectric hand prosthesis while receiving grip force sensory feedback encoded using either linear modulation of amplitude (LAM) or linear modulation of frequency (LFM) of direct nerve stimulation (namely, bidirectional prostheses). Both subjects achieved similar and significantly above-chance performance when they were asked to exploit LAM or LFM in different tasks. The feedbacks allowed them to discriminate, during manipulation through the robotic hand, objects of different compliances and shapes or different placements on the prosthesis. Similar high performances were obtained when they were asked to apply different levels of force in a random order on a dynamometer using LAM or LFM. In contrast, only the LAM strategy allowed the subjects to continuously modulate the grip pressure on the dynamometer. Furthermore, when long-lasting trains of stimulation were delivered, LFM strategy generated a very fast adaptation phenomenon in the subjects, which caused them to stop perceiving the restored sensations. Both encoding approaches were perceived as very different from the touch feelings of the healthy limb (natural). These results suggest that the choice of specific sensory feedback encodings can have an effect on user performance while grasping. In addition, our results invite the development of new approaches to provide more natural sensory feelings to the users, which could be addressed by a more biomimetic strategy in the future.


Subject(s)
Artificial Limbs , Hand/surgery , Feedback, Sensory/physiology , Female , Hand/physiology , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...