Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Proc Natl Acad Sci U S A ; 107(35): 15443-8, 2010 Aug 31.
Article in English | MEDLINE | ID: mdl-20702766

ABSTRACT

The hematopoietic system produces a large number of highly specialized cell types that are derived through a hierarchical differentiation process from a common stem cell population. miRNAs are critical players in orchestrating this differentiation. Here, we report the development and application of a high-throughput microfluidic real-time quantitative PCR (RT-qPCR) approach for generating global miRNA profiles for 27 phenotypically distinct cell populations isolated from normal adult mouse hematopoietic tissues. A total of 80,000 RT-qPCR assays were used to map the landscape of miRNA expression across the hematopoietic hierarchy, including rare progenitor and stem cell populations. We show that miRNA profiles allow for the direct inference of cell lineage relations and functional similarity. Our analysis reveals a close relatedness of the miRNA expression patterns in multipotent progenitors and stem cells, followed by a major reprogramming upon restriction of differentiation potential to a single lineage. The analysis of miRNA expression in single hematopoietic cells further demonstrates that miRNA expression is very tightly regulated within highly purified populations, underscoring the potential of single-cell miRNA profiling for assessing compartment heterogeneity.


Subject(s)
Cell Lineage/genetics , Gene Expression Profiling , Hematopoietic Stem Cells/metabolism , MicroRNAs/genetics , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cluster Analysis , Female , Flow Cytometry , Hematopoietic Stem Cells/cytology , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Reverse Transcriptase Polymerase Chain Reaction
3.
Biochemistry (Mosc) ; 68(7): 810-5, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12946264

ABSTRACT

The structural and functional organization of the adaptor protein Ruk(1) is characterized by the presence of three SH3-domains at the N-terminus followed by Pro- and Ser-rich sequences and a C-terminal coiled-coil region. Multiple modules in the Ruk(1) structure involved in protein-protein interactions can provide for formation of ligand clusters with varied properties and subcellular location. To study the nature and biological role of such complexes, the recombinant protein Ruk(1) with a Glu-epitope at the C-terminus (Ruk(1) Glu-tagged) was purified from transfected HEK293 cells by affinity chromatography on protein G-Sepharose with covalently conjugated anti-Glu-tag antibodies. By SDS polyacrylamide gel electrophoresis with subsequent staining with silver, a set of minor bands in addition to the 85-kD Ruk(1) Glu-tagged was detected in the purified preparation of the recombinant protein. Proteins with affinity for nucleic acids were also revealed in the Ruk(1) Glu-tagged preparation by retardation of electrophoretic mobility of 32P-labeled oligodeoxyribonucleotides in gel. The Ruk(1) Glu-tagged preparation was also shown to hydrolyze both deoxyribonucleotides and plasmid DNA. ZnCl2 and heparin inhibited the DNAse activity. These findings suggest the presence of DNases associated with the Ruk(1) protein in HEK293 cells. Such complexes were isolated from lysates of HEK293 cells by chromatography on heparin-Sepharose. By elution with 0.5 and 1.0 M NaCl, two fractions with DNase activity and containing proteins with molecular weights of 83, 80, and 72 kD were obtained. The reaction was inhibited by ZnCl2 and heparin, and previous precipitation of Ruk-related proteins with anti-Ruk antibodies resulted in the exhaustion of nuclease activity. By immunoblotting with anti-Ruk antibodies, 83-kD protein immunologically related to the Ruk(1) protein was identified in the fractions. It was concluded that the adaptor protein Ruk(1) forms complexes with endonucleases in HEK293 cells.


Subject(s)
Adaptor Proteins, Signal Transducing , Adaptor Proteins, Vesicular Transport/metabolism , Deoxyribonucleases/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/isolation & purification , Carrier Proteins/genetics , Carrier Proteins/isolation & purification , Carrier Proteins/metabolism , Cell Line , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/isolation & purification , DNA-Binding Proteins/metabolism , Deoxyribonucleases/genetics , Deoxyribonucleases/isolation & purification , Humans , Protein Binding , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...