Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 441(1): 511-22, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21880012

ABSTRACT

The peptides encoded by the VGF gene are gaining biomedical interest and are increasingly being scrutinized as biomarkers for human disease. An endocrine/neuromodulatory role for VGF peptides has been suggested but never demonstrated. Furthermore, no study has demonstrated so far the existence of a receptor-mediated mechanism for any VGF peptide. In the present study, we provide a comprehensive in vitro, ex vivo and in vivo identification of a novel pro-lipolytic pathway mediated by the TLQP-21 peptide. We show for the first time that VGF-immunoreactivity is present within sympathetic fibres in the WAT (white adipose tissue) but not in the adipocytes. Furthermore, we identified a saturable receptor-binding activity for the TLQP-21 peptide. The maximum binding capacity for TLQP-21 was higher in the WAT as compared with other tissues, and selectively up-regulated in the adipose tissue of obese mice. TLQP-21 increases lipolysis in murine adipocytes via a mechanism encompassing the activation of noradrenaline/ß-adrenergic receptors pathways and dose-dependently decreases adipocytes diameters in two models of obesity. In conclusion, we demonstrated a novel and previously uncharacterized peripheral lipolytic pathway encompassing the VGF peptide TLQP-21. Targeting the sympathetic nerve-adipocytes interaction might prove to be a novel approach for the treatment of obesity-associated metabolic complications.


Subject(s)
Neuropeptides/metabolism , Peptide Fragments/pharmacology , Adipocytes/cytology , Adipocytes/drug effects , Animals , Body Composition , Dietary Fats/adverse effects , Dietary Fats/metabolism , Male , Mice , NIH 3T3 Cells , Nerve Growth Factors , Obesity/chemically induced , Obesity/metabolism , Protein Binding , Protein Transport , Receptors, Cell Surface
2.
Cell Biol Int Rep (2010) ; 17(1): e00002, 2010.
Article in English | MEDLINE | ID: mdl-23119140

ABSTRACT

Most cells activate intracellular signalling to recover from heat damage. An increase of temperature, known as HS (heat shock), induces two major signalling events: the transcriptional induction of HSPs (heat-shock proteins) and the activation of the MAPK (mitogen-activated protein kinase) cascade. We performed the present study to examine the effects of HS, induced by different experimental conditions, on various kinases [ERK (extracellular-signal-regulated kinase), JNK (c-Jun N-terminal kinase), p38, Akt, AMPK (AMP-activated protein kinase) and PKC (protein kinase C)]. We investigated by Western blot analysis the phosphorylation of MAPK as a measure of cellular responsiveness to heat shift (37°C) and mild HS (40°C) in different cell lines. The results of the study indicate that every cell line responded to heat shift, and to a greater extent to HS, increasing ERK and JNK phosphorylation, whereas variable effects on activation or inhibition of PKC, AMPK, Akt and p38 were observed. Besides the implications of intracellular signalling activated by heat variations, these data may be of technical relevance, indicating possible sources of error due to different experimental temperature conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...