Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Nat Commun ; 4: 1903, 2013.
Article in English | MEDLINE | ID: mdl-23695697

ABSTRACT

Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system's state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment's effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system.

2.
Cancer Res ; 57(21): 4905-12, 1997 Nov 01.
Article in English | MEDLINE | ID: mdl-9354456

ABSTRACT

The Mxi1 protein functions in a regulatory network with members of the c-Myc family, in which c-Myc activates transcription and stimulates cell proliferation, and Mxi1 negatively regulates these actions. Inactivation of the MXI1 gene could, therefore, inhibit differentiation and enhance proliferation in the presence of normal levels of c-Myc, and thus MXI1 is a potential tumor suppressor gene. We and others have previously mapped the MXI1 gene to the distal portion of chromosome 10q, a region that is rearranged or affected by allelic loss in many astrocytic brain tumors. Using a newly described polymorphic CA microsatellite repeat in the third MXI1 intron, we show that 7 of 11 informative glioblastomas demonstrated MXI1 allelic loss. Sequence analysis revealed no somatic mutations in any of the six MXI1 coding exons, similar to findings in prostate tumors with MXI1 allelic loss. To determine whether MXI1 can indeed function as a suppressor of growth, we have introduced a steroid-inducible MXI1 expression vector into the U87MG cell line, a glioblastoma cell line lacking endogenous MXI1 expression. Induction of MXI1 expression resulted in a decreased growth rate and distinct morphological changes. Furthermore, cell cycle analysis demonstrated that induction of MXI1 results in accumulation of cells in the G2-M phase. Thus, these studies support the notion that MXI1 normally functions to suppress cell growth and suggest that loss of MXI1 function may play a role in human glioblastoma development.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Deletion , Genes, Tumor Suppressor/physiology , Glioblastoma/genetics , Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors , Cell Division/genetics , Chromosomes, Human, Pair 10/genetics , DNA-Binding Proteins/drug effects , DNA-Binding Proteins/genetics , Dexamethasone/pharmacology , G2 Phase/genetics , Genetic Vectors/drug effects , Genetic Vectors/genetics , Glioblastoma/pathology , Glucocorticoids/pharmacology , Humans , Transcription Factors/drug effects , Transcription Factors/genetics , Transfection , Tumor Suppressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...